
Piarm
Release 1.0

www.sunfounder.com

Dec 30, 2022

CONTENTS

1 Component List and Assembly Instructions 3

2 Hardware Introduction 5
2.1 Arm . 5
2.2 Shovel Bucket . 8
2.3 Hanging Clip . 12
2.4 Electromagnet . 16
2.5 Dual Joystick Module . 18
2.6 About Robot HAT . 21

3 Play with Ezblock 23
3.1 Quick Guide on Ezblock . 23
3.2 Test 3 EoATs . 25
3.3 Sound Effects . 33
3.4 Dual Joystick Module . 37
3.5 Remote Control . 49
3.6 Coordinate Mode . 65
3.7 Memory Function . 69
3.8 GAME - Catching Dolls . 73
3.9 GAME - Iron Collection . 81

4 Play with Python 89
4.1 Quick Guide on Python . 89
4.2 Test 3 EoATs . 110
4.3 Sound Effects . 112
4.4 Dual Joystick Module Control . 114
4.5 Keyboard Control . 121
4.6 Coordinate Mode . 129
4.7 Memory function . 132
4.8 GAME - Catching Dolls . 135
4.9 GAME - Iron Collection . 138

5 Appendix 143
5.1 I2C Configuration . 143
5.2 Remote Desktop . 145
5.3 About the Battery . 154

6 Thank You 157

7 Copyright Notice 159

i

ii

Piarm, Release 1.0

Thank you for choosing our PiArm.

PiArm is a three-degree-of-freedom robotic arm for Raspberry Pi. It has 3 interchangeable parts - bucket, hanging clip
and solenoid - to help you perform different tasks.

In addition, PiArm offers both remote control and built-in dual joystick module control.

This tutorial includes several parts: device list, assembly guide, programming and appendices. The programming
section is divided into two chapters: Playing in Ezblock and Playing in Python, each of which allows you to make
PiArm work the way you want it to.

• Play with Ezblock

If you are new to programming, check out this chapter as it introduces Ezblock Studio, a block-based visual program-
ming software that allows you to make PiArm move and implement some interesting projects by simply dragging and
dropping blocks.

• Play with Python

If you prefer to program in a more popular programming language - python, you can refer to this section. The chapter
covers starting from burning the Raspberry Pi OS, to configuring the Raspberry Pi and finally getting the code running
to see the effects, even if you don’t have any Python foundation, you can get PiArm working quickly.

CONTENTS 1

Piarm, Release 1.0

2 CONTENTS

CHAPTER

ONE

COMPONENT LIST AND ASSEMBLY INSTRUCTIONS

You need to check whether there are missing or damaged components according to the list first. If there are any
problems, please contact us and we will solve them as soon as possible.

Please follow the steps on the PDF to assemble.

Note:

1. Before assembling, you need to buy 2 18650 batteries and fully charge them, refer to About the Battery.

2. Robot HAT cannot charge the battery, so you need to buy a battery charger at the same time.

• PiArm Assembly Instructions (.pdf)

Warning: If the kit you received includes a clear Robot HAT Case, please do not mount it so as not to affect the
PiArm left and right rotation range.

3

Piarm, Release 1.0

4 Chapter 1. Component List and Assembly Instructions

CHAPTER

TWO

HARDWARE INTRODUCTION

2.1 Arm

PiArm’s arm can be controlled in two ways: Angle Mode and Coordinate Mode.

• Angle Mode: Writes a certain angle to the three servos on the arm, thus rotating the arm to a specific position.

• Coordinate Mode: Create a spatial right-angle coordinate system for the arm and set the control point. Set the
coordinates of the control point so that the arm can reach a specific position.

2.1.1 Angle Mode

The arm has three servos to control its up and down, left and right, and front and back. We use , and to represent their
rotation angles, as shown below.

• (alpha): represents the front-to-back rotation angle of the arm, due to the limitation of the structure, the
recommended rotation range is: -30 ~ 60.

• (beta): represents the up and down rotation angle of the arm, due to the limitation of the structure, the
recommended rotation range is: -60 ~ 30.

• (gamma): represents the left and right rotation angle of the arm, the range is: -90 ~ 90.

5

Piarm, Release 1.0

2.1.2 Coordinate Mode

PiArm has a spatial rectangular coordinate system with its origin located at the center of the output axis of the servos
on both sides. The Control Point is located at the top of the arm and is scaled in millimeters. In the initial state, the
coordinates of the Control Point are (0, 80, 80).

6 Chapter 2. Hardware Introduction

Piarm, Release 1.0

It is important to note that the arm length of PiArm is finite, and if the coordinate values are set beyond the limits of
its mechanical motion, PiArm will rotate to an unpredictable position.

In other words, the total arm length of PiArm is 160 mm, which means that the limit value of the control points moving
along the Y-axis should be between (0,0,0) and (0,160,0). However, due to the limitations of the structure itself, the
range of movement should be much smaller than this.

• The recommended range for the X coordinate is -80 ~ 80.

• The recommended range for Y coordinate is 30 ~ 130.

• The recommended range for Z coordinate is 0 ~ 80.

2.1. Arm 7

Piarm, Release 1.0

2.2 Shovel Bucket

Assembling the Shovel Bucket

Assemble the Shovel Bucket as shown below.

Note: In step 2 you need to insert the servo into P11 for zeroing before inserting the D3 plate into the servo shaft in a
vertical orientation.

8 Chapter 2. Hardware Introduction

Piarm, Release 1.0

Assemble the Shovel Bucket to the end of the PiArm with M2x4 screws.

2.2. Shovel Bucket 9

Piarm, Release 1.0

The Shovel Bucket has a rotation range of -90 ~ 60.

10 Chapter 2. Hardware Introduction

Piarm, Release 1.0

Use range

Can’t dig water, can be used to dig sand and gravel.

2.2. Shovel Bucket 11

Piarm, Release 1.0

2.3 Hanging Clip

Assembly

Assemble the Hanging Clip as shown below.

Note: Note that in step 3 you need to insert the servo into the P11 for zeroing before inserting the D1 plate into the
servo shaft in a vertical orientation.

12 Chapter 2. Hardware Introduction

Piarm, Release 1.0

Attach the Hanging Clip to the end of the PiArm with the M2x4 screw.

2.3. Hanging Clip 13

Piarm, Release 1.0

The angle range of the Hanging Clip is 0-90°.

14 Chapter 2. Hardware Introduction

Piarm, Release 1.0

Using range

• The weight of the clamped object should be less than 150g.

• The recommended height of the object to be clamped should be less than 4cm, width less than 8.5cm.

• Slender objects need to find the right angle to clip up.

2.3. Hanging Clip 15

Piarm, Release 1.0

2.4 Electromagnet

Assembly

Assemble the electromagnet module according to the diagram below.

16 Chapter 2. Hardware Introduction

Piarm, Release 1.0

Then secure the electromagnet to the end of the PiArm with the M2x4 screws.

2.4. Electromagnet 17

Piarm, Release 1.0

Range of use

• Can only be used to suck ferrous products.

• The larger the surface area of the iron product, the stronger the adsorption.

• It is recommended that the weight of iron objects is less than 150g.

2.5 Dual Joystick Module

Dual joystick module, as the name implies, consists of two joysticks, each of which can output electrical signals in X,
Y and Z directions.

18 Chapter 2. Hardware Introduction

Piarm, Release 1.0

Before you can use the dual joystick module, you need to connect its 8 wires to the corresponding pins of the Robot
HAT as shown in the picture below.

The joystick reads in a plane coordinate system from 0 to 4095, with the origin (0,0) in the lower left corner.

As an example, the coordinate value when the joystick is not pushed is (2048,2048). If the joystick is pushed to the
left, the coordinates are (0,2048). When the joystick is pushed down, the coordinates are (2048,0), as shown below.

However, electrical signals tend to fluctuate and it is difficult to get an absolutely stable reading, so we usually set a
value interval to determine where the joystick is currently located.

The recommended boundary values are set to 3072 and 1024. when the joystick reading is greater than 3072, the
joystick is considered to be pushing up (or right); if the reading is less than 1024, the joystick is considered to be

2.5. Dual Joystick Module 19

Piarm, Release 1.0

pushing down (or left).

Note: In the Python library, these values have been processed into directional indications as follows.

The Z-axis button outputs a low level (0) when pressed and a high level (1) when released.

20 Chapter 2. Hardware Introduction

Piarm, Release 1.0

2.6 About Robot HAT

RST Button

• A short-press of the RST Button will cause any running programs to reset.

• A long-press of the RST Button until the LED lights up, and then releasing will disconnect the Robot
HAT’s Bluetooth chip.

USR Button

• The functions of the USR Button can be configured through programming. (Pressing down leads to a input
of 0, and releasing produces a input of 1)

LED

• Configured through programming (Outputting 1 turns the LED on, Outputting 0 turns the LED off.)

Battery Indicator

• Battery voltage above 7.8V will light up the two indicator LEDs. Battery voltage ranging from 6.7V to
7.8V will only light up one LED, voltage below 6.7V will turn both LEDs off.

2.6. About Robot HAT 21

Piarm, Release 1.0

Bluetooth Indicator

• The Bluetooth indicator LED will stay on with a solid Bluetooth connection, and blink rapidly during a
signal transmission. The LED will blink at 1-second intervals if the Bluetooth is disconnected.

Note: You can see more details in the Robot HAT Documentation.

22 Chapter 2. Hardware Introduction

https://docs.sunfounder.com/projects/robot-hat/en/latest/index.html

CHAPTER

THREE

PLAY WITH EZBLOCK

Ezblock is a development platform developed by SunFounder designed for beginners to lower the barriers to getting
started with Raspberry Pi. It has two programming languages: Graphical and Python, and available on almost all
different types of devices. With Bluetooth and Wi-Fi support, you can download code, remote control a Raspberry Pi,
on Ezblock Studio.

3.1 Quick Guide on Ezblock

There are 2 parts here:

• Servo Adjust allows you to keep all the servos at 0 degrees to complete a proper and safe assembly (otherwise
you will probably damage the servos).

• Install and Configure EzBlock Studio will guide you to download Ezblock Studio to play with your robot.

3.1.1 Servo Adjust

When assembling to the part with the servo, you need to keep the servo at 0° and secure it with the servo screw. Please
follow the tutorial below to do this.

1. Firstly, Install EzBlock OS onto a Micro SD card, once the installation is complete, insert it into the Raspberry
Pi.

2. To ensure that the servo has been properly set to 0°, first insert the rocker arm into the servo shaft and then
gently rotate the rocker arm to a different angle.

23

https://docs.sunfounder.com/projects/ezblock3/en/latest/quick_guide_3.2/install_ezblock_os.html#install-ezblock-os-latest

Piarm, Release 1.0

3. Follow the instructions on the assembly foldout, insert the battery holder cable and turn the power switch to the
ON. Wait for 1-2 minutes, there will be a sound to indicate that the Raspberry Pi boots successfully.

4. Next, plug the servo cable into the P11 port as follows.

5. At this point you will see the servo arm rotate to a specific position (0°). If the servo arm does not return to 0°,
press the RST button to restart the Robot HAT.

6. Now you can continue the installation as instructed on the assembly foldout.

24 Chapter 3. Play with Ezblock

Piarm, Release 1.0

Note:

• Do not unplug this servo cable before fastening this servo with the servo screw, you can unplug it after fastening.

• Do not turn the servo while it is powered on to avoid damage; if the servo shaft is inserted at the wrong angle,
pull out the servo and reinsert it.

• Before assembling each servo, you need to plug the servo cable into P11 and turn on the power to set its angle
to 0°.

• This zeroing function will be disabled if you download a program to the robot later with the EzBlock APP.

3.1.2 Install and Configure EzBlock Studio

As soon as the robot is assembled, you will need to carry out some basic operations.

• Install EzBlock Studio: Download and install EzBlock Studio on your device or use the web-based version.

• Connect the Product and EzBlock: Configure Wi-Fi, Bluetooth and calibrate before use.

• Open and Run Examples: View or run the related example directly.

Projects

Here, we show you the projects of playing Piarm on Ezblock Studio. If you are new to these, you can refer to the code
images inside each project to program, and can learn the use of blocks according to TIPS.

If you don’t want to write these projects one by one, we have uploaded them to Ezblock Studio’s Examples page and
you can run them directly or edit them and run them later.

3.2 Test 3 EoATs

This is the first program and the one you must see.

In this project, you will learn how to assemble and use PiArm’s 3 End of Arm Tooling (EoAT, replaced by this
abbreviation later.).

Before programming, you need to learn the basic usage of Ezblock Studio from here.

• How to Create a New Project?

3.2.1 Tips on basic blocks

• This is the basic structure of the program, the [Start] block is used to do some initialization (even if no block
is placed, it cannot be deleted) and the [Forever] block is, as the name suggests, a continuous loop that allows
your program to change and respond.

• This block is used to set an interval time in milliseconds.

3.2. Test 3 EoATs 25

https://docs.sunfounder.com/projects/ezblock3/en/latest/quick_guide_3.2/install_ezblock_app.html#install-ezblock-app-latest
https://docs.sunfounder.com/projects/ezblock3/en/latest/quick_guide_3.2/connect_product_ezblock.html#connect-product-ezblock-latest
https://docs.sunfounder.com/projects/ezblock3/en/latest/quick_guide_3.2/open_run.html#open-run-latest
https://docs.sunfounder.com/projects/ezblock3/en/latest/create_new.html#create-project-latest

Piarm, Release 1.0

3.2.2 Tips on PiArm blocks

Here you can find some blocks needed to make PiArm work.

26 Chapter 3. Play with Ezblock

Piarm, Release 1.0

3.2.3 Shovel Bucket

Step 1

Assemble the Shovel Bucket to the end of PiArm.

Step 2

Now start writing the code to make Shovel Bucket work.

Put [set bucket pin as ()] in the [Start] block to initialize the bucket pin as P3.

Note: Because in the assembly diagram above, it is connected to the Transfer Module, which is already connected to
P3 during the PiArm assembly. Of course you can also connect it to other spare pins.

Step 3

Toggles the angle of the Shovel Bucket between 0° and 90° with an interval of 1s.

• [set shovel bucket angle to ()]: Used to set the angle of Shovel Bucket, the range is 0-90.

• [delay ()]: From the Basic category, used to set the time interval between 2 block runs, in: ms.

3.2. Test 3 EoATs 27

Piarm, Release 1.0

Step 4

Once the code is written, click the Download button in the bottom right corner to download it to the PiArm.

Now you will see the Shovel Bucket moving back and forth, and you can click the Run button to stop the code from
running.

28 Chapter 3. Play with Ezblock

Piarm, Release 1.0

3.2.4 Hanging Clip

Step 1

Assemble Hanging Clip to the end of PiArm.

Step 2

Now start writing the code to make Shovel Bucket work.

Put [set hanging clip pin as ()] in the [Start] block to initialize the hanging clip pin as P3.

Note: Because in the assembly diagram above, it is connected to the Transfer Module, which is already connected to
P3 during the PiArm assembly. Of course you can also connect it to other spare pins.

3.2. Test 3 EoATs 29

Piarm, Release 1.0

Step 3

Toggles the angle of the Hanging Clip between 0° and 90° with an interval of 1s.

• [set hanging clip angle to ()]: Used to set the angle of Hanging Clip, the range is 0-90.

• [delay ()]: From the Basic category, used to set the time interval between 2 block runs, in: ms.

Step 4

Once the code is written, click the Download button in the bottom right corner to download it to the PiArm.

Now you will see the Hanging Clip repeatedly open/close, and you can click the Run button to stop the code from
running.

30 Chapter 3. Play with Ezblock

Piarm, Release 1.0

3.2.5 Electromagnet

Step 1

Assemble Electromagnet to the end of PiArm.

Step 2

Now start writing the code to make Shovel Bucket work.

Put [set electromagnet pin as ()] in the [Start] block to initialize the electromagnet pin as P3.

Note: Because in the assembly diagram above, it is connected to the Transfer Module, which is already connected to
P3 during the PiArm assembly. Of course you can also connect it to other spare pins.

3.2. Test 3 EoATs 31

Piarm, Release 1.0

Step 3

Let the electromagnet be repeatedly energized and de-energized at 1 second intervals.

• [turn electromagnet (on/off)]: Used to energize (on) or de-energize (off) the Electromagnet.

• [delay ()]: From the Basic category, used to set the time interval between 2 block runs, in: ms.

Step 4

Once the code is written, click the Download button in the bottom right corner to download it to the PiArm.

Now you will find that the Electromagnet is energized every second (the LED (D2) on the electromagnet lights up,
indicating that it is energized, at which time it can be used to adsorb some materials with iron.).

32 Chapter 3. Play with Ezblock

Piarm, Release 1.0

3.3 Sound Effects

There is a built-in speaker in Robot HAT that can be used to play some music and sound effects, as well as to implement
TTS functions.

3.3.1 Tips on Blocks

• This block is a separate thread and can play some built-in background music.

• This block can play some built-in sound effects.

• You can write some text in this block and let PiArm speak them.

3.3. Sound Effects 33

Piarm, Release 1.0

3.3.2 Programming

Step 1

You may want to simplify the program with Functions, especially when you perform the same operation multiple
times. Putting these operations into a newly declared function can greatly facilitate your use.

Click on the Functions category and select the appropriate function block, the function you created will also appear
here.

The Function block without output is used here.

Step 2

Create a function named [music], after creating it you will see it in the Functions category.

Now let the [music] function implement playing background music at 50% volume.

• [set background music volume to ()]: Used to set the volume of the background music, in the range of 0%-100%.

• [play background music ()]: This block is a separate thread and can play some built-in background music.

34 Chapter 3. Play with Ezblock

Piarm, Release 1.0

Step 3

Create a function named [sound] to make PiArm play a specific sound effect at a certain volume.

• [play sound effects () with volume to () %]: This block can be used to play built-in sound effects with a volume
range of 0%-100%.

Step 4

Similarly create a function named [tts] that will be used to make PiArm say something.

• [say ()]: This block converts the text you type into speech for PiArm to speak.

3.3. Sound Effects 35

Piarm, Release 1.0

Step 5

From the Functions category, drag out these 3 functions into the [Forever] block to have them executed in order.

Step 6

Once the code is written, click the Download button in the bottom right corner to download it to the PiArm.

Now you will find that piarm first plays the sound effect in the sound function, and then plays the background music
in the [music] function. When the background music is played, the [tts] function is run for timing, and the countdown
voice broadcast will be performed after 30 seconds.

Note: You can also find the code with the same name on the Examples page of Ezblock Studio and click Run or

36 Chapter 3. Play with Ezblock

Piarm, Release 1.0

Edit directly to see the results.

3.4 Dual Joystick Module

We can control PiArm in 2 parts, Arm and EoAT. In the first project, you have learned how to Test 3 EoATs of PiArm’s
separately.

In this project, first the arm is controlled by Angle Mode and dual joystick module. Then the control code for the three
EoATs was added to this so that the dual joystick module can control both arm and EoAT.

• Arm - Joystick Control

• Shovel Bucket - Joystick Control

3.4. Dual Joystick Module 37

Piarm, Release 1.0

• Hanging Clip - Joystick Control

• Electromagnet - Joystick Control

3.4.1 Arm - Joystick Control

PiArm’s arm can be controlled in two ways: Angle Mode and Coordinate Mode.

• Angle Mode: Writes a certain angle to the three servos on the arm, thus rotating the arm to a specific position.

• Coordinate Mode: Create a spatial right-angle coordinate system for the arm and set the control point. Set the
coordinates of the control point so that the arm can reach a specific position.

Step 1

You may want to simplify your program with variables, now click the Create variable button on the Variables
category to create 5 variables (HIGH, LOW, , and).

Note: The created variables are also stored in the Variables category.

38 Chapter 3. Play with Ezblock

Piarm, Release 1.0

Step 2

Set the initial values for these variables and set the servo rotation speed to 70%.

Note: For the reason of the values of the HIGH and LOW variables, please refer to Dual Joystick Module.

Step 3

Use [if else] block to do some conditional judgment cases (drag 5 [else if] blocks from the left to below the [if] block).

• [if else]: Conditional judgment block, you can create multiple conditional judgments by clicking the set icon
and dragging [else] or [else if] to the right below the [if].

3.4. Dual Joystick Module 39

Piarm, Release 1.0

Step 4

The left and right joystick connections for the dual joystick module are shown below, refer to Dual Joystick Module.

• The X of the left joystick is connected to A0 and the Y is connected to A1.

• The X of the right joystick is connected to A2, and the Y is connected to A3.

Assume that the X and Y of the left joystick and the Y of the right joystick are used to control the 3 servos of PiArm
respectively, now first set the judgment condition to determine whether the left and right joysticks are toggled or not.

• If A0 (LX) is greater than HIGH (3072), it means that the left joystick is toggled to the right.

• If A0 (LX) is less than LOW (1024), it means the left joystick is toggled to the left.

40 Chapter 3. Play with Ezblock

Piarm, Release 1.0

• If A1 (LY) is greater than HIGH (3072), it means the left joystick is toggled forward.

• If A1 (LY) is less than LOW (1024), it means the left joystick is toggled backward.

• If A3 (RY) is greater than HIGH (3072), it means the right joystick is toggled forward.

• If A3 (RY) is less than LOW (1024), it means the right joystick is toggled backward.

Step 4

Now set the rotation effect of PiArm according to the toggle of the left and right joysticks.

• If the left joystick is toggled to the right, the Arm will turn right.

• If the left joystick is toggled to the left, the Arm will turn left.

• If the left joystick is toggled forward, the Arm will extend forward.

• If the left joystick is toggled backward, the Arm will retract backward.

3.4. Dual Joystick Module 41

Piarm, Release 1.0

• If the right joystick is toggled forward, the Arm will lower down.

• If the right joystick is toggled backward, the Arm will raise up.

Note:

• , and represent the 3 servo rotation ranges on PiArm, refer to: Angle Mode.

• [constrain () low () high ()]: From Math category for setting the variation of a constant to a certain range.

Step 5

42 Chapter 3. Play with Ezblock

Piarm, Release 1.0

Store the obtained , and angle values into the [() () ()] block, and then use the [set positon] block to make PiArm
rotate this position.

Step 7

Once you click the download button, you can use the Dual Joystick Module to control PiArm.

• Left joystick toggle left or right, the arm will turn to the left or right.

• Left joystick toggle forward or backward, the arm will extend forward or retract backward.

• Right joystick toggle forward or backward, the arm will raise up or lower down.

Note: You can also find the code with the same name on the Examples page of Ezblock Studio and click Run or
Edit directly to see the results.

3.4. Dual Joystick Module 43

Piarm, Release 1.0

44 Chapter 3. Play with Ezblock

Piarm, Release 1.0

3.4.2 Shovel Bucket - Joystick Control

Now add the control code for the Shovel Bucket.

Note: You can also find the code with the same name on the Examples page of Ezblock Studio and click Run or Edit
directly to view the code.

Once the code is run, you can control both the PiArm’s arm and Shovel Bucket with the dual joystick module. But
you need to install Shovel Bucket to the PiArm first.

3.4. Dual Joystick Module 45

Piarm, Release 1.0

• Push the left joystick to the left or right, the arm will turn to the left or right.

• Push the left joystick forward or backward, the arm will extend or retract.

• Push the right joystick forward or backward, the arm will be raised or lowered.

• Push the left joystick to rewind the Shovel Bucket inward.

• Press the right joystick to extend the Shovel Bucket outward.

3.4.3 Hanging Clip - Joystick Control

Now add the control code for the Hanging Clip to the code for the control arm.

Note: You can also find the code with the same name on the Examples page of Ezblock Studio and click Run or Edit
directly to view the block.

46 Chapter 3. Play with Ezblock

Piarm, Release 1.0

After the code is run, you can use the dual joystick module to control PiArm’s arms and vertical clips at the same time.
But you need to install Hanging Clip to PiArm first.

• Push the left Joystick to the left or right, the arm will turn to the left or right.

• Push the left Joystick forward or backward, the arm will extend or retract.

• Push the right Joystick forward or backward, the arm will be raised or lowered.

• Press the left Joystick to close the Hanging Clip.

• Press the right Joystick to open the Hanging Clip.

3.4. Dual Joystick Module 47

Piarm, Release 1.0

3.4.4 Electromagnet - Joystick Control

Now add the control code for the Electromagnet to the code for the control arm.

Note: You can also find the code with the same name on the Examples page of Ezblock Studio and click Run or Edit
directly to view the block.

After the code is run, you can use the dual joystick module to control both PiArm’s arm and the Electromagnet. But
you need to install Electromagnet to PiArm first.

• Push the left joystick to the left or right, the arm will turn to the left or right.

• Push the left joystick forward or backward, the arm will extend or retract.

48 Chapter 3. Play with Ezblock

Piarm, Release 1.0

• Push the right joystick forward or backward, the arm will be raised or lowered.

• Press the left joystick to turn on the Electromagnet.

• Press the right joystick to turn the Electromagnet off.

3.5 Remote Control

In addition to the dual joystick module, we can also use the widgets on the Remote Control page in EzBlock Studio
to control PiArm movement.

• Arm - Remote Control

• Create a Library

• Shovel Bucket - Remote Control

• Hanging Clip - Remote Control

• Electromagnet - Remote Control

3.5.1 Arm - Remote Control

PiArm’s arm can be controlled in two ways: Angle Mode and Coordinate Mode.

• Angle Mode: Writes a certain angle to the three servos on the arm, thus rotating the arm to a specific position.

• Coordinate Mode: Create a spatial right-angle coordinate system for the arm and set the control point. Set the
coordinates of the control point so that the arm can reach a specific position.

The Angle Mode is used here.

Step 1

3.5. Remote Control 49

https://docs.sunfounder.com/projects/ezblock3/en/latest/remote.html

Piarm, Release 1.0

To use the remote control function, you need to enter the Remote Control page from the left side of main page, and
then drag one D-pad and 3 buttons to the central area.

Back in the programming page, you will see an additional Remote category, and the D-pad and Button block appear
in it.

• [Button () get value]: This block is used to read the value of the button, press is 1, release is 0.

• [Button () is (press/release)]: This block and Button () get value = (0/1) have the same effect and
can be used directly to determine whether a button is pressed or not.

• [D-pad () get () value]: This block is used to read the up/down/left/right (selected through the drop-down menu)
pad values, press for 1 and release for 0.

50 Chapter 3. Play with Ezblock

Piarm, Release 1.0

Step 2

Create 3 variables (, and) and set the initial values, and set the rotation speed of PiArm to 70%.

Step 3

Create a function called [arm_control] to set the rotation direction of the PiArm based on the arrow keys and button
values.

Note: The function name cannot contain spaces, and two words can be connected by _.

Note:

• , and represent the 3 servo rotation ranges on PiArm, refer to: Angle Mode.

• [constrain () low () high ()]: From Math category for setting the variation of a constant to a certain range.

• [if else]: Conditional judgment block, you can create multiple conditional judgments by clicking the set icon

3.5. Remote Control 51

Piarm, Release 1.0

and dragging [else] or [else if] to the right below the [if].

• If the UP button () of D-pad is pressed, the Arm will extend forward.

• If the Down button () of D-pad is pressed, the Arm will retract backward.

• If the LEFT button () of D-pad is pressed, the Arm will turn left.

• If the RIGHT button () of D-pad is pressed, the Arm will turn right.

• If Button A is pressed, the Arm will lower down.

• If Button B is pressed, the Arm will raise up.

Step 4

52 Chapter 3. Play with Ezblock

Piarm, Release 1.0

Put the function [arm_control] into [Forever] for loop execution, and finally click the Download button to run the
code.

After that you can use the D-pad and Button A/B on the Remote Control page to control the movement of the Arm.

Note:

• The functions must be placed before the [start] and [Forever] blocks.

• You can also find the code with the same name on the EzBlock Studio Examples page and click Run or Edit
directly to view the result.

3.5.2 Create a Library

To be able to use the function - [arm_control] in other code later, you can create it as a library and import it when you
need to use it.

Step 1

Open the menu icon in the upper right corner and select Create Library.

3.5. Remote Control 53

Piarm, Release 1.0

Step 2

Select the function, there is only one function here, so arm_control is selected by default.

Step 3

Name the library and fill in the description so that it can be better distinguished later.

54 Chapter 3. Play with Ezblock

Piarm, Release 1.0

Step 4

Wait for the prompt to save successfully and the library will be saved in My Library on your personal page. You can
also see it when you click Import Library.

3.5.3 Shovel Bucket - Remote Control

Create a new project and write code for it so that we can control the Shovel Bucket while controlling the arm.

Step 1

Import [arm_control] library, if you have not created this library before, please refer to: Create a Library.

3.5. Remote Control 55

Piarm, Release 1.0

In the Mylib page, select the library you created and click Import.

After importing, this library is in a collapsed style. You can right-click on it and click Expand Block, so that you can
see its internal code.

Step 2

Go to the remote control page and drag a D-pad and two buttons out again, because the import library will not import
the widgets, so you need to drag them in again. Add two more buttons to control the angle of the Shovel Bucket.

56 Chapter 3. Play with Ezblock

Piarm, Release 1.0

Step 3

Create the variables (, , and angle) and set the initial values to 0, then initialize the PiArm rotation speed and the pin
of Shovel Bucket.

Step 4

Create a new function [shovel], and write the code as follows to control Shovel Bucket with two buttons.

• Use [if () else ()] block as a judgment condition. If button C is pressed, the variable angle is added by 1; if

3.5. Remote Control 57

Piarm, Release 1.0

button D is pressed, the variable angle is subtracted by 1.

• Constrain the value of variable angle to -90 ~ 60 with [constrain () low() high ()] block.

• Set the angle of Shovel Bucket according to the variable angle.

Step 5

Drag the [arm_control] and [shovel] functions from the Functions category to the [Forever] block respectively.

After clicking the download button, use the D-pad and buttons A/B on the remote control page to control the movement
of the arm, and then use buttons C/D to control the addition/decrease of the bucket angle.

Note:

• The functions must be placed before the [start] and [Forever] blocks.

• You can also find the code with the same name on the EzBlock Studio Examples page and click Run or Edit
directly to view the result.

58 Chapter 3. Play with Ezblock

Piarm, Release 1.0

3.5.4 Hanging Clip - Remote Control

Create a new project and write code for it so that we can control the Hanging Clip while controlling the arm.

Step 1

Import [arm_control] library, if you have not created this library before, please refer to: Create a Library.

In the Mylib page, select the library you created and click Import.

After importing, this library is in a collapsed style. You can right-click on it and click Expand Block, so that you can
see its internal code.

Step 2

Go to the remote control page and drag a D-pad and two buttons out again, because the import library will not import
the widgets, so you need to drag them in again. Add two more buttons to control the angle of the Hanging Clip.

3.5. Remote Control 59

Piarm, Release 1.0

Step 3

Create the variables (, , and angle) and set the initial values to 0, then initialize the PiArm rotation speed and the pin
of Hanging Clip.

Step 4

Create a new function [clip], and write the code as follows to control Hanging Clip with two buttons.

• Use [if () else ()] block as a judgment condition. If button C is pressed, the variable angle is added by 1; if
button D is pressed, the variable angle is subtracted by 1.

60 Chapter 3. Play with Ezblock

Piarm, Release 1.0

• Constrain the value of variable angle to 0 ~ 90 with [constrain () low() high ()] block.

• Set the angle of Hanging Clip according to the variable angle.

Step 5

Drag the [arm_control] and [clip] functions from the Functions category to the [Forever] block respectively.

After clicking the download button, use the D-pad and buttons A/B on the remote control page to control the movement
of the arm, and then use buttons C/D to control the opening and closing of the Hanging Clip.

Note:

• The functions must be placed before the [start] and [Forever] blocks.

• You can also find the code with the same name on the EzBlock Studio Examples page and click Run or Edit
directly to view the result.

3.5. Remote Control 61

Piarm, Release 1.0

3.5.5 Electromagnet - Remote Control

Create a new project and write code for it so that we can control the Electromagnet while controlling the arm.

Step 1

Import [arm_control] library, if you have not created this library before, please refer to: Create a Library.

In the Mylib page, select the library you created and click Import.

After importing, this library is in a collapsed style. You can right-click on it and click Expand Block, so that you can
see its internal code.

Step 2

Go to the remote control page and drag a D-pad and two buttons out again, because the import library will not import
the widgets, so you need to drag them in again. In addition, add a switch widget to turn the Electromaget on/off.

62 Chapter 3. Play with Ezblock

Piarm, Release 1.0

Step 3

Create the variables (, , and) and set the initial values to 0, then initialize the PiArm rotation speed and the pin of
Electromaget.

Step 4

Create a new function [electromagnet], and write code for it as the following steps, so that you can control Electro-
magnet by the Switch widget.

• Use [if () else ()] block as a judgment condition. If the switch is on, the Electromaget is activated; if the switch
is off, the Electromaget is turned off.

3.5. Remote Control 63

Piarm, Release 1.0

Step 5

Drag the [arm_control] and [electromaget] functions from the Functions category to the [Forever] block respectively.

After clicking the download button, when the switch toggles to on, the electromagnet turns on (it is magnetic at this
time, you can use iron adsorption material); when the switch toggles to off, the electromagnet turns off. At the same
time, you can use the D-pad and buttons A/B on the remote control page to control the movement of the arm.

Note:

• The functions must be placed before the [start] and [Forever] blocks.

• You can also find the code with the same name on the EzBlock Studio Examples page and click Run or Edit
directly to view the result.

64 Chapter 3. Play with Ezblock

Piarm, Release 1.0

3.6 Coordinate Mode

PiArm’s arm can be controlled in two ways: Angle Mode and Coordinate Mode.

• Angle Mode: Writes a certain angle to the three servos on the arm, thus rotating the arm to a specific position.

• Coordinate Mode: Create a spatial right-angle coordinate system for the arm and set the control point. Set the
coordinates of the control point so that the arm can reach a specific position.

This project sets 2 coordinate points by coordinate mode, and let the PiArm clip the rubber duck on the left to the bowl
on the right. But you need to mount Hanging Clip to the PiArm first.

3.6. Coordinate Mode 65

Piarm, Release 1.0

3.6.1 Programming

Step 1

Initialize the pin of the Hanging Clip and set the speed of the robot arm to 60%.

Step 2

Set the coordinates of the 2 points. Since the rubber duck on the left and the bowl on the right are on the same line,
you will find that their Y coordinate values are the same.

• [start_coord]: The coordinates of the left rubber duck.

• [start_coord_up]: The coordinate of straight above the left rubber duck.

• [end_coord]: The coordinates of the bowl.

• [end_coord_up]: The coordinates straight above the bowl.

66 Chapter 3. Play with Ezblock

Piarm, Release 1.0

Note:

• All coordinates here refer to the coordinates of the control points, but the actual distance between the X and Y
coordinates is a little larger when the end-of-arm tool is mounted.

• The tolerance distance is different for each end of arm tool. For example, 3-4cm for Hanging Clip and Electro-
magnet, 6-7cm for Shovel Bucket.

• For example, here the X coordinate is written as 100, but the actual distance is 13-14cm.

• It is generally recommended that the X coordinate is -80 ~ 80, but since the Y coordinate value here is small
(the recommended range is 30~130), it is possible to reach to 100. However, if you increase the Y coordinate
value, the X coordinate value needs to be reduced according to the actual situation due to the linkage action.

Step 3

In the [loop] block, let PiArm do the following.

• PiArm opens the Hanging Clip (20°), then rotates to the left rubber duck position (start_coord), then closes the
Hanging Clip (90°).

• PiArm raises his head (start_coord_up) and then turns to the right side above the bowl (end_coord_up).

• PiArm lowers his head (end_coord_up), then opens the Hanging Clip (20°) to let the rubber duck fall into the
bowl, and finally raises his head again (end_coord_up).

3.6. Coordinate Mode 67

Piarm, Release 1.0

Step 4

Click on the Download button in the bottom right corner and you will see PiArm repeating the actions described
above.

Note: You can also find the code with the same name on the Examples page of Ezblock Studio and click Run or Edit
directly to view the code.

68 Chapter 3. Play with Ezblock

Piarm, Release 1.0

3.7 Memory Function

Piarm provides a function of recording actions, which can be used to record the actions that PiArm has done.

In this project, we will use the Dual Joystick Module to control the movement of the Arm of PiArm in Coordinate
Control mode, and record the motion trajectory of the Arm through the joystick buttons so that PiArm can move
repeatedly along the recorded trajectory.

3.7. Memory Function 69

Piarm, Release 1.0

3.7.1 Programming

Step 1

Create five variables (HIGH, LOW, xAxis, yAxis and zAxis) and set their initial values.

Step 2

Create a function named [set_position] to make the Dual Joystick Module move the PiArm in Coordinate Mode.

• If the left joystick is toggled to the right, the Arm will turn right.

• If the left joystick is toggled to the left, the Arm will turn left.

70 Chapter 3. Play with Ezblock

Piarm, Release 1.0

• If the left joystick is toggled forward, the Arm will extend forward.

• If the left joystick is toggled backward, the Arm will retract backward.

• If the right joystick is toggled forward, the Arm will raise up.

• If the right joystick is toggled backward, the Arm will lower down.

Note:

• About X, Y, Z coordinate directions, please refer to: Coordinate Mode.

• For the connection and direction of the dual joystick, refer to Dual Joystick Module.

3.7. Memory Function 71

Piarm, Release 1.0

• [constrain () low () high ()]: From Math category for setting the variation of a constant to a certain range.

• [if else]: Conditional judgment block, you can create multiple conditional judgments by clicking the set icon
and dragging [else] or [else if] to the right below the [if].

Step 3

A new function, [record], is created to record the current actions and to allow PiArm to reproduce them.

• The left and right buttons of the Dual Joystick Module are connected to D0 (Left Button), D1 (Right Buttbon)
respectively.

• The buttons will output low level (0) when pressed and output high level (1) when released.

• When the button of the left joystick is pressed, the action of PiArm will be recorded at this time, and there will
be a voice prompt to indicate the completion of recording.

• When the button of the right joystick is pressed, PiArm will reproduce these recorded actions.

Note:

• The [if else], [and] and [=] blocks are all from the Logic category.

• [run the recorded actions at () internal]: This block is used to set the time interval for each set of recorded
actions, if it is 0 it will reproduce each set of actions continuously.

Step 4

Put the [set_position] and [record] functions into the [Forever] block to execute them sequentially, and finally click the
Download button to run the code.

Now you can use the joystick to control PiArm, press the button of the left joystick to record the desired actions, and
after recording a few groups, press the button of the right joystick to make PiArm reproduce these actions.

72 Chapter 3. Play with Ezblock

Piarm, Release 1.0

Note: You can also find the code with the same name on the Examples page of Ezblock Studio and click Run or
Edit directly to see the results.

3.7.2 What’s More

You can also add separate EoAT control code to this project, so that you can control the Arm and EoAT of the PiArm
at the same time.

• If you want to control Shovel Bucket, please refer to Shovel Bucket - Joystick Control to write the code.

• If you want to control Hanging Clip, please refer to Hanging Clip - Joystick Control to write the code.

• If you want to control Electromagnet, please refer to Electromagnet - Joystick Control to write the code.

3.8 GAME - Catching Dolls

Now let’s play a game of catching dolls and see who can catch more dolls with PiArm in the given time. In order to
play this game, we need to implement two functions, the first one is to control PiArm with the dual joystick module,
and the second one is to timing, when the countdown is over, we can’t control PiArm anymore. These two parts must
be executed simultaneously.

3.8. GAME - Catching Dolls 73

Piarm, Release 1.0

3.8.1 Programming

Step 1

Create five variables (HIGH, LOW, , , , flag, angle) and and set initial values for them. Then initialize the PiArm
rotation speed and Hanging Clip pin.

Note:

• For the reason of the values of the HIGH and LOW variables, please refer to Dual Joystick Module.

• , and represent the 3 servo rotation ranges on PiArm, refer to: Angle Mode.

74 Chapter 3. Play with Ezblock

Piarm, Release 1.0

Step 2

Create another 5 variables (LX, LY, RY, LB, RB) to read the X, Y and pressed values of the Dual Joystick Module
respectively.

3.8. GAME - Catching Dolls 75

Piarm, Release 1.0

Step 3

Set pressing the left and right joysticks at the same time as the game start action, so if LB and RB are read as 0 at the
same time, it means the left and right joysticks are pressed, then the timing starts and the flag is set to 1.

Step 4

Create a function named [clip] to control the Hanging Clip.

• When the left joystick is pressed and the right joystick is released, the Hanging Clip will slowly closed.

• When the left joystick is released and the right joystick is pressed, the Hanging Clip will slowly opened.

76 Chapter 3. Play with Ezblock

Piarm, Release 1.0

Step 5

Create a function [control] to set the rotation effect of PiArm based on the Dual Joystick Module.

• When flag is 1, it means the game starts. At this time you can start to control PiArm.

• If the left joystick (LX) is toggled to the right, the Arm will turn right.

• If the left joystick (LX) is toggled to the left, the Arm will turn left.

• If the left joystick (LY) is toggled forward, the Arm will extend forward.

• If the left joystick (LY) is toggled backward, the Arm will retract backward.

• If the right joystick (RY) is toggled forward, the Arm will lower down.

• If the right joystick (RY) is toggled backward, the Arm will raise up.

• The Hanging Clip control function is also called here. This allows you to control both the Arm and Hanging
Clip of the PiArm.

3.8. GAME - Catching Dolls 77

Piarm, Release 1.0

Step 6

Put the [control] function into the [Forever] block.

78 Chapter 3. Play with Ezblock

Piarm, Release 1.0

Step 7

Create a function named [timing] to use for timing. The game time is set to 60 seconds (60000), and a countdown will
chime in the last 3 seconds to let you know that time is almost up.

Step 8

3.8. GAME - Catching Dolls 79

Piarm, Release 1.0

Let the [timing] function run in a separate thread. This allows you to control PiArm while counting down.

The complete code is as follows:

80 Chapter 3. Play with Ezblock

Piarm, Release 1.0

3.9 GAME - Iron Collection

In this project, prepare 3 shapes of iron pieces: triangle, circle and square, PiArm will randomly say a shape, you need
to control PiArm to put the corresponding shape of iron pieces into the corresponding box in the specified time, you
will not be able to control PiArm when the time is over.

3.9. GAME - Iron Collection 81

Piarm, Release 1.0

3.9.1 Programming

Step 1

Create five variables (, , , flag, shape) and and set initial values for them. Then initialize the PiArm rotation speed
and Electromagnet pin.

Note:

• , and represent the 3 servo rotation ranges on PiArm, refer to: Angle Mode.

Step 2

Drag 2 D-pads from the remote control page to control PiArm, a button to start the game, and a Digital Tube to display
the time.

82 Chapter 3. Play with Ezblock

Piarm, Release 1.0

Step 3

Create a function named [magnet] to enable the left and right control of the D-pad B to turn the electromagnet on and
off.

Step 4

Create a function named [control] to implement the Arm of PiArm to be controlled by the D-pad A and D-pad B.

Note:

3.9. GAME - Iron Collection 83

Piarm, Release 1.0

• , and represent the 3 servo rotation ranges on PiArm, refer to: Angle Mode.

• [constrain () low () high ()]: From Math category for setting the variation of a constant to a certain range.

• [if else]: Conditional judgment block, you can create multiple conditional judgments by clicking the set icon
and dragging [else] or [else if] to the right below the [if].

• If the UP button () of D-pad A is pressed, the Arm will extend forward.

• If the Down button () of D-pad A is pressed, the Arm will retract backward.

• If the LEFT button () of D-pad A is pressed, the Arm will turn left.

• If the RIGHT button () of D-pad A is pressed, the Arm will turn right.

84 Chapter 3. Play with Ezblock

Piarm, Release 1.0

• If the UP button () of D-pad B is pressed, the Arm will raise up.

• If the Down button () of D-pad B is pressed, the Arm will lower down.

Step 5

Create the function [say_shape] to have PiArm speak a random shape.

Step 6

The main flow of the code: when button E is pressed, the timer starts and PiArm will say a random shape. flag is
used to represent the start of the countdown and you can control PiArm.

Step 7

Create a function named [timing] to use for timing. The game time is set to 60 seconds, after the time is up, PiArm
will say Game over and you will no longer be able to control it.

3.9. GAME - Iron Collection 85

Piarm, Release 1.0

Here the [time] block is used for timing, in Forever, when button E is pressed, the timing starts and [time - startTime]
represents how many seconds have passed since then.

Step 8

Let the [timing] function run in a separate thread. This allows you to control PiArm while counting down.

The complete code is as follows:

86 Chapter 3. Play with Ezblock

Piarm, Release 1.0

3.9. GAME - Iron Collection 87

Piarm, Release 1.0

88 Chapter 3. Play with Ezblock

CHAPTER

FOUR

PLAY WITH PYTHON

If you want to program in python, then you will need to learn some basic Python programming skills and basic
knowledge of Raspberry Pi, please configure the Raspberry Pi first according to Quick Guide on Python.

4.1 Quick Guide on Python

This section is to teach you how to install Raspberry Pi OS, configure wifi to Raspberry Pi, remote access to Raspberry
Pi to run the corresponding code.

If you are familiar with Raspberry Pi and can open the command line successfully, then you can skip the first 3 parts
and then complete the last part.

4.1.1 What Do We Need?

Required Components

Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer that plugs into a computer monitor or TV, and uses a
standard keyboard and mouse. It is a capable little device that enables people of all ages to explore computing, and to
learn how to program in languages like Scratch and Python.

89

Piarm, Release 1.0

Power Adapter

To connect to a power socket, the Raspberry Pi has a micro USB port (the same found on many mobile phones). You
will need a power supply which provides at least 2.5 amps.

Micro SD Card

Your Raspberry Pi needs an Micro SD card to store all its files and the Raspberry Pi OS. You will need a micro SD
card with a capacity of at least 8 GB

Optional Components

Screen

To view the desktop environment of Raspberry Pi, you need to use the screen that can be a TV screen or a computer
monitor. If the screen has built-in speakers, the Pi plays sounds via them.

Mouse & Keyboard

When you use a screen , a USB keyboard and a USB mouse are also needed.

HDMI

The Raspberry Pi has a HDMI output port that is compatible with the HDMI ports of most modern TV and computer
monitors. If your screen has only DVI or VGA ports, you will need to use the appropriate conversion line.

Case

You can put the Raspberry Pi in a case; by this means, you can protect your device.

90 Chapter 4. Play with Python

Piarm, Release 1.0

Sound or Earphone

The Raspberry Pi is equipped with an audio port about 3.5 mm that can be used when your screen has no built-in
speakers or when there is no screen operation.

4.1.2 Installing the OS

Required Components

Any Raspberry Pi 1 * Personal Computer
1 * Micro SD card

Step 1

Raspberry Pi have developed a graphical SD card writing tool that works on Mac OS, Ubuntu 18.04 and Windows,
and is the easiest option for most users as it will download the image and install it automatically to the SD card.

Visit the download page: https://www.raspberrypi.org/software/. Click on the link for the Raspberry Pi Imager that
matches your operating system, when the download finishes, click it to launch the installer.

Step 2

When you launch the installer, your operating system may try to block you from running it. For example, on Windows
I receive the following message:

If this pops up, click on More info and then Run anyway, then follow the instructions to install the Raspberry Pi
Imager.

Step 3

Insert your SD card into the computer or laptop SD card slot.

Step 4

4.1. Quick Guide on Python 91

https://www.raspberrypi.org/software/

Piarm, Release 1.0

Warning: Upgrading the Raspberry Pi OS to Debian Bullseye will cause some features to not work, so it is
recommended to continue using the Debian Buster version.

In the Raspberry Pi Imager, click CHOOSE OS -> Raspberry Pi OS(other).

Scroll down to the end of the newly opened page and you will see Raspberry Pi OS(Legacy) and Raspberry Pi
OS Lite(Legacy), these are security updates for Debian Buster, the difference between them is with or without the
desktop. It is recommended to install Raspberry Pi OS(Legacy), the system with the desktop.

92 Chapter 4. Play with Python

Piarm, Release 1.0

Step 5

Select the SD card you are using.

Step 6

Press Ctrl+Shift+X or click the setting ** button to open the **Advanced options page to enable SSH and con-
figure wifi, these 2 items must be set, the others depend on your choice . You can choose to always use this image
customization options.

4.1. Quick Guide on Python 93

Piarm, Release 1.0

Then scroll down to complete the wifi configuration and click SAVE.

Note: wifi country should be set the two-letter ISO/IEC alpha2 code for the country in which you are using
your Raspberry Pi, please refer to the following link: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_
assigned_code_elements

94 Chapter 4. Play with Python

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements

Piarm, Release 1.0

Step 7

Click the WRITE button.

4.1. Quick Guide on Python 95

Piarm, Release 1.0

Step 8

If your SD card currently has any files on it, you may wish to back up these files first to prevent you from permanently
losing them. If there is no file to be backed up, click Yes.

96 Chapter 4. Play with Python

Piarm, Release 1.0

Step 9

After waiting for a period of time, the following window will appear to represent the completion of writing.

4.1. Quick Guide on Python 97

Piarm, Release 1.0

4.1.3 Set up Your Raspberry Pi

If You Have a Screen

If you have a screen, it will be easy for you to operate on the Raspberry Pi.

Required Components

Any Raspberry Pi 1 * Power Adapter
1 * Micro SD card 1 * Screen Power Adapter
1 * HDMI cable 1 * Screen
1 * Mouse 1 * Keyboard

1. Insert the SD card you’ve set up with Raspberry Pi OS into the micro SD card slot on the underside of your
Raspberry Pi.

2. Plug in the Mouse and Keyboard.

3. Connect the screen to Raspberry Pi’s HDMI port and make sure your screen is plugged into a wall socket and
switched on.

Note: If you use a Raspberry Pi 4, you need to connect the screen to the HDMI0 (nearest the power
in port).

4. Use the power adapter to power the Raspberry Pi. After a few seconds, the Raspberry Pi OS desktop will be
displayed.

98 Chapter 4. Play with Python

Piarm, Release 1.0

If You Have No Screen

If you don’t have a display, you can log in to the Raspberry Pi remotely, but before that, you need to get the IP of the
Raspberry Pi.

Get the IP Address

After the Raspberry Pi is connected to WIFI, we need to get the IP address of it. There are many ways to know the IP
address, and two of them are listed as follows.

1. Checking via the router

If you have permission to log in the router(such as a home network), you can check the addresses assigned to Raspberry
Pi on the admin interface of router.

The default hostname of the Raspberry Pi OS is raspberrypi, and you need to find it. (If you are using ArchLinuxARM
system, please find alarmpi.)

2. Network Segment Scanning

You can also use network scanning to look up the IP address of Raspberry Pi. You can apply the software, Advanced
IP scanner and so on.

Scan the IP range set, and the name of all connected devices will be displayed. Similarly, the default hostname of the
Raspberry Pi OS is raspberrypi, if you haven’t modified it.

4.1. Quick Guide on Python 99

Piarm, Release 1.0

Use the SSH Remote Control

We can open the Bash Shell of Raspberry Pi by applying SSH. Bash is the standard default shell of Linux. The Shell
itself is a program written in C that is the bridge linking the customers and Unix/Linux. Moreover, it can help to
complete most of the work needed.

For Linux or/Mac OS X Users

Step 1

Go to Applications->Utilities, find the Terminal, and open it.

Step 2

Type in ssh pi@ip_address . “pi” is your username and “ip_address” is your IP address. For example:

ssh pi@192.168.18.197

Step 3

Input “yes”.

100 Chapter 4. Play with Python

Piarm, Release 1.0

Step 4

Input the passcode and the default password is raspberry.

Step 5

We now get the Raspberry Pi connected and are ready to go to the next step.

4.1. Quick Guide on Python 101

Piarm, Release 1.0

Note: When you input the password, the characters do not display on window accordingly, which is normal. What
you need is to input the correct password.

For Windows Users

If you’re a Windows user, you can use SSH with the application of some software. Here, we recommend PuTTY.

Step 1

Download PuTTY.

Step 2

Open PuTTY and click Session on the left tree-alike structure. Enter the IP address of the RPi in the text box under
Host Name (or IP address) and 22 under Port (by default it is 22).

102 Chapter 4. Play with Python

Piarm, Release 1.0

Step 3

Click Open. Note that when you first log in to the Raspberry Pi with the IP address, there prompts a security reminder.
Just click Yes.

Step 4

When the PuTTY window prompts “login as:”, type in “pi” (the user name of the RPi), and password: “raspberry”
(the default one, if you haven’t changed it).

Note: When you input the password, the characters do not display on window accordingly, which is normal. What
you need is to input the correct password.

If inactive appears next to PuTTY, it means that the connection has been broken and needs to be reconnected.

4.1. Quick Guide on Python 103

Piarm, Release 1.0

Step 5

Here, we get the Raspberry Pi connected and it is time to conduct the next steps.

Note: If you are not satisfied with using the command window to control the Raspberry Pi, you can also use the
remote desktop function, which can help us manage the files in the Raspberry Pi easily.

For details on how to do this, please refer to Remote Desktop.

4.1.4 Download and Run the Code

First download and run the robot-hat module.

cd /home/pi/
git clone https://github.com/sunfounder/robot-hat.git
cd robot-hat
sudo python3 setup.py install

Note: Running setup.py will download some necessary components. Due to network problems, you may not be
able to download successfully. You may need to download it again.

In this case, type Y and press Enter.

104 Chapter 4. Play with Python

Piarm, Release 1.0

Then download the code and install the piarm library.

cd /home/pi/
git clone -b 2.0.0 https://github.com/sunfounder/piarm.git
cd piarm
sudo python3 setup.py install

This step will take a little time, so please be patient.

Finally you need to run the script i2samp.sh to install the components needed for the i2s amplifier, otherwise it
may not have sound.

cd /home/pi/piarm
sudo bash i2samp.sh

4.1. Quick Guide on Python 105

Piarm, Release 1.0

Type y and press Enter to continue running the script.

Type y and press Enter to make /dev/zero run in the background.

106 Chapter 4. Play with Python

Piarm, Release 1.0

Enter y and press Enter to restart the robot.

Note: If there is no sound after a restart, you may need to run the i2samp.sh script several times.

4.1.5 Servo Adjust

To ensure that the servo has been properly set to 0°, first insert the rocker arm into the servo shaft and then gently
rotate the rocker arm to a different angle.

Follow the instructions on the assembly foldout, insert the battery holder cable and turn the power switch to the ON.

4.1. Quick Guide on Python 107

Piarm, Release 1.0

Wait for 1-2 minutes, there will be a sound to indicate that the Raspberry Pi boots successfully.

Now, run servo_zeroing.py in the examples/ folder.

cd /home/pi/piarm/examples
sudo python3 servo_zeroing.py

Note: If you get an error, try re-enabling the Raspberry Pi’s I2C port, see: I2C Configuration.

Next, plug the servo cable into the P11 port as follows.

108 Chapter 4. Play with Python

Piarm, Release 1.0

At this point you will see the servo arm rotate to a specific position (0°). If the servo arm does not return to 0°, press
the RST button to restart the Robot HAT.

Now you can continue the installation as instructed on the assembly foldout.

Note:

• Do not unplug this servo cable before fixing it with the servo screw, you can unplug it after fixing it.

• Do not rotate the servo while it is powered on to avoid damage; if the servo shaft is not inserted at the right
angle, pull the servo out and reinsert it.

• Before assembling each servo, you need to plug the servo cable into P11 and turn on the power to set its angle
to 0°.

After the assembly is complete, you can try to run the projects below.

4.1. Quick Guide on Python 109

Piarm, Release 1.0

4.2 Test 3 EoATs

This is the first program, and the one you must see.

In this program, you will learn how to assemble and use PiArm’s 3 end-of-arm tools.

4.2.1 Shovel Bucket

Run the code

cd /home/pi/piarm/examples
sudo python3 shovel.py

After running the code, you will see the Shovel Bucket moving back and forth. But you need to assemble Shovel
Bucket first.

Code

from robot_hat import Robot,Servo,PWM
from robot_hat.utils import reset_mcu
from time import sleep
from piarm import PiArm

reset_mcu()
sleep(0.01)
arm = PiArm([1,2,3])
arm.bucket_init(PWM('P3'))
arm.set_offset([0,0,0])

if __name__ == "__main__":
while True:

arm.set_bucket(-50)
sleep(1)
arm.set_bucket(90)
sleep(1)

How it work

from robot_hat import Robot,Servo,PWM
from robot_hat.utils import reset_mcu
from time import sleep
from piarm import PiArm

• First, import the Robot, servo, and PWM classes from robot_hat.

• Import the reset_mcu class from the robot_hat.utils module, which is used to reset the MCU, to avoid
conflicts between programs that can cause communication errors.

• Import the sleep class from the time module, which is used to implement the time delay function in seconds.

• Import the PiArm class from the piarm module, which is used to control PiArm.

reset_mcu()
sleep(0.01)
arm = PiArm([1,2,3])
arm.bucket_init(PWM('P3'))
arm.set_offset([0,0,0])

110 Chapter 4. Play with Python

https://docs.sunfounder.com/projects/robot-hat/en/latest/index.html

Piarm, Release 1.0

Initialize the MCU first, then initialize the individual servo connection pins of PiArm and the connection pin of the
bucket.

• PiArm(): Initialize the 3 servo pins on the Arm.

• bucket_init(): Set the pin of the bucket.

• set_offset(): Set the offset value of the 3 servos on the Arm.

while True:
arm.set_bucket(-50)
sleep(1)
arm.set_bucket(90)
sleep(1)

This code is used to move the bucket back and forth between -50 and 90 degrees with a time interval of 1 second.

• set_bucket(): Used to control the rotation angle of the bucket.

4.2.2 Hanging Clip

Run the code

cd /home/pi/piarm/examples
sudo python3 clip.py

After running the code, you will see the Hanging Clip repeatedly opening and closing. But you need to assemble
Hanging Clip first.

Code

from robot_hat import Robot,Servo,PWM
from robot_hat.utils import reset_mcu
from time import sleep
from piarm import PiArm

reset_mcu()
sleep(0.01)
arm = PiArm([1,2,3])
arm.hanging_clip_init(PWM('P3'))
arm.set_offset([0,0,0])

if __name__ == "__main__":
while True:

arm.set_hanging_clip(-50)
sleep(1)
arm.set_hanging_clip(90)
sleep(1)

• hanging_clip_init(): Used to initialize the pin of the Hanging Clip.

• set_hanging_clip(): used to set the rotation angle of the Hanging Clip.

4.2. Test 3 EoATs 111

Piarm, Release 1.0

4.2.3 Electromagnet

Run the code

cd /home/pi/piarm/examples
sudo python3 electromagnet.py

After running the code, you will see that Electromagnet is energized every second, the LED (D2) on the electromagnet
lights up to indicate that it is energized, at which point it can attach some material with the iron.

But you need to assemble Electromagnet first.

Code

from robot_hat import Robot,Servo,PWM
from robot_hat.utils import reset_mcu
from time import sleep
from piarm import PiArm

reset_mcu()
sleep(0.01)
arm = PiArm([1,2,3])
arm.electromagnet_init(PWM('P3'))
arm.set_offset([0,0,0])

if __name__ == "__main__":
while True:

arm.set_electromagnet('on')
sleep(1)
arm.set_electromagnet('off')
sleep(1)

• electromagnet_init(): Used to initialize the connection of the Electromagnet.

• set_electromagnet(): Used to control the Electromagnet on/off.

4.3 Sound Effects

In this example, we use the sound effects of PiArm (Robot HAT to be exact). It consists of three parts: Muisc, Sound,
and Text to Speech.

Install i2samp

Before using this function, please activate the speaker so that it can produce sound.

Run i2samp.sh, this script will install everything you need to use the i2s amplifier.

cd /home/pi/piarm/
sudo bash i2samp.sh

There will be several prompts to confirm the request. Respond to all prompts with Y. After making changes to the
Raspberry Pi system, you will need to reboot the computer for these changes to take effect.

After restarting, i2samp.sh runs the script again to test the amplifier. If the speaker successfully plays sound, the
configuration is complete.

Run the code

112 Chapter 4. Play with Python

Piarm, Release 1.0

cd /home/pi/piarm/examples
sudo python3 sound_effect.py

After the code is run, you will find that PiArm first plays the sound effect in the sound function, and then plays the
background music. When the background music is played, the [tts] function is run for timing, and the countdown
voice broadcast will be performed after 30 seconds.

Code

from robot_hat import Music,TTS
from time import sleep

m = Music()
t = TTS()

def sound():
song = './sounds/sign.wav'
m.music_set_volume(40)
m.sound_play(song)

def background_music():
music = './musics/sports-Ahjay_Stelino.mp3'
m.music_set_volume(50)
m.background_music(music)

def tts():
t.say("timing begins")
sleep(1)
t.say("three")
sleep(1)
t.say("two")
sleep(1)
t.say("one")
sleep(1)
t.say("Stop music")
sleep(1)

if __name__ == "__main__":
background_music()
sleep(10)
#sound()
#tts()
while True:

#background_music()
sound()
tts()

How it works?

The code is simple, it creates 3 functions sound(), background() and tts(), and then calls them separately to
make PiArm play music and speak.

def sound():
song = './sounds/sign.wav'
m.music_set_volume(40)
m.sound_play(song)

Play the sound effect . /sounds/sign.wav at 40% volume.

4.3. Sound Effects 113

Piarm, Release 1.0

• music_set_volume(): Set volume, range is 0%-100%.

• sound_play(): Play a sound in a specific path.

def background_music():
music = './musics/sports-Ahjay_Stelino.mp3'
m.music_set_volume(50)
m.background_music(music)

Play background music . /musics/sports-Ahjay_Stelino.mp3 at 50% volume.

• background_music(): Play the background music in a specific path.

def tts():
t.say("timing begins")
sleep(1)
t.say("three")
sleep(1)
t.say("two")
sleep(1)
t.say("one")
sleep(1)
t.say("Stop music")
sleep(1)

Write text to PiArm to make it speak.

• say(): Writing characters or strings in parentheses will make PiArm speak them out.

4.4 Dual Joystick Module Control

In this project, we will use the Dual Joystick Module that comes with the kit to control the PiArm.

• Shovel Bucket - Joystick Control

• Hanging Clip - Joystick Control

• Electromagnet - Joystick Control

114 Chapter 4. Play with Python

Piarm, Release 1.0

4.4.1 Shovel Bucket - Joystick Control

cd /home/pi/piarm/examples
sudo python3 joystick_module1.py

Once the code is run, you will be able to control the rotation of PiArm’s arm by toggling the left and right joysticks,
and controlling the angle of the Shovel Bucket by pressing the left and right joysticks respectively.

But you need to assemble Shovel Bucket to PiArm first.

Code

from robot_hat import Servo,PWM,Joystick,ADC,Pin
from robot_hat.utils import reset_mcu
from time import sleep

from piarm import PiArm

reset_mcu()
sleep(0.01)

leftJoystick = Joystick(ADC('A0'),ADC('A1'),Pin('D0'))
rightJoystick = Joystick(ADC('A2'),ADC('A3'),Pin('D1'))

arm = PiArm([1,2,3])
arm.bucket_init(PWM('P3'))
arm.set_offset([0,0,0])

(continues on next page)

4.4. Dual Joystick Module Control 115

Piarm, Release 1.0

(continued from previous page)

def _angles_control():
arm.speed = 100
flag = False
alpha,beta,gamma = arm.servo_positions
bucket = arm.component_staus

if leftJoystick.read_status() == "up":
alpha += 1
flag = True

elif leftJoystick.read_status() == "down":
alpha -= 1
flag = True

if leftJoystick.read_status() == "left":
gamma += 1
flag = True

elif leftJoystick.read_status() == "right":
gamma -= 1
flag = True

if rightJoystick.read_status() == "up":
beta += 1
flag = True

elif rightJoystick.read_status() == "down":
beta -= 1
flag = True

if leftJoystick.read_status() == "pressed":
bucket += 2
flag = True

elif rightJoystick.read_status() == "pressed":
bucket -= 2
flag = True

if flag == True:
arm.set_angle([alpha,beta,gamma])
arm.set_bucket(bucket)
print('servo angles: %s , bucket angle: %s '%(arm.servo_positions,arm.

→˓component_staus))

if __name__ == "__main__":
while True:

_angles_control()
sleep(0.01)

How it works?

leftJoystick = Joystick(ADC('A0'),ADC('A1'),Pin('D0'))
rightJoystick = Joystick(ADC('A2'),ADC('A3'),Pin('D1'))

Define the X,Y and Z pin connections for the left and right joysticks.

def _angles_control():
arm.speed = 100
flag = False
alpha,beta,gamma = arm.servo_positions
bucket = arm.component_staus

if leftJoystick.read_status() == "up":
(continues on next page)

116 Chapter 4. Play with Python

Piarm, Release 1.0

(continued from previous page)

alpha += 1
flag = True

elif leftJoystick.read_status() == "down":
alpha -= 1
flag = True

if leftJoystick.read_status() == "left":
gamma += 1
flag = True

elif leftJoystick.read_status() == "right":
gamma -= 1
flag = True

if rightJoystick.read_status() == "up":
beta += 1
flag = True

elif rightJoystick.read_status() == "down":
beta -= 1
flag = True

if leftJoystick.read_status() == "pressed":
bucket += 2
flag = True

elif rightJoystick.read_status() == "pressed":
bucket -= 2
flag = True

if flag == True:
arm.set_angle([alpha,beta,gamma])
arm.set_bucket(bucket)
print('servo angles: %s , bucket angle: %s '%(arm.servo_positions,arm.

→˓component_staus))

In this code, the _angles_control() function is created to control the PiArm.

• alpha, beta and gamma refer to the angles of the 3 servos on the Arm respectively, refer to: Angle Mode.

• If the left joystick is toggled up, alpha increases and the Arm will extend forward.

• If the left joystick is toggled down, alpha decreases and the Arm will retract backward.

• If the left joystick is toggled to the left, gamma increases and the Arm will turn left.

• If the left joystick is toggled to the right, gamma decreases and the Arm will turn right.

• If the right joystick is toggled up, beta increases and the Arm will raise up.

• If the right joystick is toggled down, beta decreases and the Arm will lower down.

• Finally, use the left and right joystick buttons to control the angle of the Shovel Bucket respectively.

4.4.2 Hanging Clip - Joystick Control

Run the code

cd /home/pi/piarm/examples
sudo python3 joystick_module2.py

Once the code is running, you will be able to control the rotation of PiArm’s arm by toggling the left and right joysticks,
and control the opening/closing of the Hanging Clip by pressing the left and right joysticks respectively.

But you need to assemble Hanging Clip to PiArm first.

4.4. Dual Joystick Module Control 117

Piarm, Release 1.0

Code

from robot_hat import Servo,PWM,Joystick,ADC,Pin
from robot_hat.utils import reset_mcu
from time import sleep

from piarm import PiArm

reset_mcu()
sleep(0.01)

leftJoystick = Joystick(ADC('A0'),ADC('A1'),Pin('D0'))
rightJoystick = Joystick(ADC('A2'),ADC('A3'),Pin('D1'))

arm = PiArm([1,2,3])
arm.hanging_clip_init(PWM('P3'))
arm.set_offset([0,0,0])

def _angles_control():
arm.speed = 100
flag = False
alpha,beta,gamma = arm.servo_positions
clip = arm.component_staus

if leftJoystick.read_status() == "up":
alpha += 1
flag = True

elif leftJoystick.read_status() == "down":
alpha -= 1
flag = True

if leftJoystick.read_status() == "left":
gamma += 1
flag = True

elif leftJoystick.read_status() == "right":
gamma -= 1
flag = True

if rightJoystick.read_status() == "up":
beta += 1
flag = True

elif rightJoystick.read_status() == "down":
beta -= 1
flag = True

if leftJoystick.read_status() == "pressed":
clip += 2
flag = True

elif rightJoystick.read_status() == "pressed":
clip -= 2
flag = True

if flag == True:
arm.set_angle([alpha,beta,gamma])
arm.set_hanging_clip(clip)
print('servo angles: %s , clip angle: %s '%(arm.servo_positions,arm.component_

→˓staus))

if __name__ == "__main__":
while True:

(continues on next page)

118 Chapter 4. Play with Python

Piarm, Release 1.0

(continued from previous page)

_angles_control()
sleep(0.01)

In this code, the _angles_control() function is created to control the PiArm.

• alpha, beta and gamma refer to the angles of the 3 servos on the Arm respectively, refer to: Angle Mode.

• If the left joystick is toggled up, alpha increases and the Arm will extend forward.

• If the left joystick is toggled down, alpha decreases and the Arm will retract backward.

• If the left joystick is toggled to the left, gamma increases and the Arm will turn left.

• If the left joystick is toggled to the right, gamma decreases and the Arm will turn right.

• If the right joystick is toggled up, beta increases and the Arm will raise up.

• If the right joystick is toggled down, beta decreases and the Arm will lower down.

• Finally, use the left and right joystick buttons to control the angles of the Hanging Clip respectively.

4.4.3 Electromagnet - Joystick Control

Run the code

cd /home/pi/piarm/examples
sudo python3 joystick_module3.py

Once the code is run, you will be able to control the rotation of PiArm’s arm by toggling the left and right joysticks,
and controlling the on/off of the Electromagnet by pressing the left and right joysticks respectively.

But you need to assemble Electromagnet to PiArm first.

Code

from robot_hat import Servo,PWM,Joystick,ADC,Pin
from robot_hat.utils import reset_mcu
from time import sleep

from piarm import PiArm

reset_mcu()
sleep(0.01)

leftJoystick = Joystick(ADC('A0'),ADC('A1'),Pin('D0'))
rightJoystick = Joystick(ADC('A2'),ADC('A3'),Pin('D1'))

arm = PiArm([1,2,3])
arm.electromagnet_init(PWM('P3'))
arm.set_offset([0,0,0])

def _angles_control():
arm.speed = 100
flag = False
alpha,beta,gamma = arm.servo_positions
status = ""

if leftJoystick.read_status() == "up":

(continues on next page)

4.4. Dual Joystick Module Control 119

Piarm, Release 1.0

(continued from previous page)

alpha += 1
flag = True

elif leftJoystick.read_status() == "down":
alpha -= 1
flag = True

if leftJoystick.read_status() == "left":
gamma += 1
flag = True

elif leftJoystick.read_status() == "right":
gamma -= 1
flag = True

if rightJoystick.read_status() == "up":
beta += 1
flag = True

elif rightJoystick.read_status() == "down":
beta -= 1
flag = True

if leftJoystick.read_status() == "pressed":
arm.set_electromagnet('on')
status = "electromagnet is on"

elif rightJoystick.read_status() == "pressed":
arm.set_electromagnet('off')
status = "electromagnet is off"

if flag == True:
arm.set_angle([alpha,beta,gamma])
print('servo angles: %s , electromagnet status: %s '%(arm.servo_positions,

→˓status))

if __name__ == "__main__":
while True:

_angles_control()
sleep(0.01)

In this code, the _angles_control() function is created to control the PiArm.

• alpha, beta and gamma refer to the angles of the 3 servos on the Arm respectively, refer to: Angle Mode.

• If the left joystick is toggled up, alpha increases and the Arm will extend forward.

• If the left joystick is toggled down, alpha decreases and the Arm will retract backward.

• If the left joystick is toggled to the left, gamma increases and the Arm will turn left.

• If the left joystick is toggled to the right, gamma decreases and the Arm will turn right.

• If the right joystick is toggled up, beta increases and the Arm will raise up.

• If the right joystick is toggled down, beta decreases and the Arm will lower down.

• Finally, use the left and right joystick buttons to control the on/off of the Electromagnet respectively.

120 Chapter 4. Play with Python

Piarm, Release 1.0

4.5 Keyboard Control

In this project, we will use w, s, a, d, i, k, j and l on the keyboard to control the PiArm.

• Shovel Bucket - Keyboard Coboardntrol

• Hanging Clip - Keyboard Control

• Electromagnet - Keyboard Control

4.5.1 Shovel Bucket - Keyboard Coboardntrol

Run the code

cd /home/pi/piarm/examples
sudo python3 keyboard_control1.py

After running the code, follow the prompts and press the keys on the keyboard to control the PiArm’s arm and Shovel
Bucket.

But you need to assemble Shovel Bucket on the PiArm first.

Note:

• To switch the keyboard to lowercase English input.

• w, s, a, d, i and k are used to control the rotation of the arm.

• j and l are used to control the angle of the Shovel Bucket.

Code

from piarm import PiArm
from robot_hat import Pin,PWM,Servo,ADC
from time import time,sleep
from robot_hat.utils import reset_mcu

import sys
(continues on next page)

4.5. Keyboard Control 121

Piarm, Release 1.0

(continued from previous page)

import tty
import termios

reset_mcu()
sleep(0.01)

arm = PiArm([1,2,3])
arm.bucket_init(PWM('P3'))
arm.set_offset([0,0,0])
controllable = 0

manual = '''
Press keys on keyboard

w: extend
s: retract
a: turn left
d: turn right
i: go up
k: go down
j: open
l: close
ESC: Quit

'''

def readchar():
fd = sys.stdin.fileno()
old_settings = termios.tcgetattr(fd)
try:

tty.setraw(sys.stdin.fileno())
ch = sys.stdin.read(1)

finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)

return ch

def control(key):

arm.speed = 100
flag = False
alpha,beta,gamma = arm.servo_positions
bucket = arm.component_staus

if key == 'w':
alpha += 3
flag = True

elif key == 's':
alpha -= 3
flag = True

if key == 'a':
gamma += 3
flag = True

elif key == 'd':
gamma -= 3
flag = True

if key == 'i':
beta += 3
flag = True

(continues on next page)

122 Chapter 4. Play with Python

Piarm, Release 1.0

(continued from previous page)

elif key == 'k':
beta -= 3
flag = True

if key == 'j':
bucket -= 1
flag = True

elif key == 'l':
bucket += 1
flag = True

if flag == True:
arm.set_angle([alpha,beta,gamma])
arm.set_bucket(bucket)
print('servo angles: %s , bucket angle: %s '%(arm.servo_positions,arm.

→˓component_staus))

if __name__ == "__main__":

print(manual)

while True:
key = readchar().lower()
control(key)
if key == chr(27):

break

How it works?

def readchar():
fd = sys.stdin.fileno()
old_settings = termios.tcgetattr(fd)
try:

tty.setraw(sys.stdin.fileno())
ch = sys.stdin.read(1)

finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)

return ch

This function references the standard input stream and returns the first character of the read data stream.

• tty.setraw(sys.stdin.fileno) is to change the standard input stream to raw mode, i.e. all characters
will not be escaped during transmission, including special characters.

• old_settings = termios.tcgetattr(fd) and termios.tcsetattr(fd, termios.
TCSADRAIN, old_settings) and acts as a backup and restore.

def control(key):

arm.speed = 100
flag = False
alpha,beta,gamma = arm.servo_positions
bucket = arm.component_staus

if key == 'w':
alpha += 3
flag = True

(continues on next page)

4.5. Keyboard Control 123

Piarm, Release 1.0

(continued from previous page)

elif key == 's':
alpha -= 3
flag = True

if key == 'a':
gamma += 3
flag = True

elif key == 'd':
gamma -= 3
flag = True

if key == 'i':
beta += 3
flag = True

elif key == 'k':
beta -= 3
flag = True

if key == 'j':
bucket -= 1
flag = True

elif key == 'l':
bucket += 1
flag = True

if flag == True:
arm.set_angle([alpha,beta,gamma])
arm.set_bucket(bucket)
print('servo angles: %s , bucket angle: %s '%(arm.servo_positions,arm.

→˓component_staus))

In this code, the control() function is created to control the PiArm by reading the key values on the keyboard.

• alpha, beta and gamma refer to the angles of the 3 servos on the arm respectively, refer to: Angle Mode.

• Press the w key on the keyboard, the alpha increases and the Arm will extend forward.

• Press the s key on the keyboard, the alpha decreases and the Arm will retract backward.

• Press the a key on the keyboard, the gamma increases and the Arm will turn left.

• Press the d key on the keyboard, the gamma decreases and the Arm will turn right.

• Press the i key on the keyboard, the beta increases and the Arm will raise up.

• Press the k key on the keyboard, the beta decreases and the Arm will lower down.

• Finally, use the k and l keys to control the angle of the Shovel Bucket respectively.

while True:
key = readchar().lower()
control(key)
if key == chr(27):

break

Call readchar() in the main program to read the key value, then pass the read key value into the control()
function so that PiArm will move according to the different keys. key == chr(27) represents the key Esc key
press.

124 Chapter 4. Play with Python

Piarm, Release 1.0

4.5.2 Hanging Clip - Keyboard Control

Run the code

cd /home/pi/piarm/examples
sudo python3 keyboard_control2.py

After running the code, follow the prompts and press the keys on the keyboard to control the Arm and Hanging Clip
of PiArm.

But you need to assemble Hanging Clip to PiArm first.

Note:

• To switch the keyboard to lowercase English input.

• w, s, a, d, i and k are used to control the rotation of the arm.

• j and l are used to control the opening and closing of the Hanging Clip.

Code

from piarm import PiArm
from robot_hat import Pin,PWM,Servo,ADC
from time import time,sleep
from robot_hat.utils import reset_mcu

import sys
import tty
import termios

reset_mcu()
sleep(0.01)

arm = PiArm([1,2,3])
arm.hanging_clip_init(PWM('P3'))
arm.set_offset([0,0,0])
controllable = 0

manual = '''
Press keys on keyboard

w: extend
s: retract
a: turn left
d: turn right
i: go up
k: go down
j: open
l: close
ESC: Quit

'''

def readchar():
fd = sys.stdin.fileno()
old_settings = termios.tcgetattr(fd)
try:

tty.setraw(sys.stdin.fileno())
(continues on next page)

4.5. Keyboard Control 125

Piarm, Release 1.0

(continued from previous page)

ch = sys.stdin.read(1)
finally:

termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
return ch

def control(key):

arm.speed = 100
flag = False
alpha,beta,gamma = arm.servo_positions
clip = arm.component_staus

if key == 'w':
alpha += 3
flag = True

elif key == 's':
alpha -= 3
flag = True

if key == 'a':
gamma += 3
flag = True

elif key == 'd':
gamma -= 3
flag = True

if key == 'i':
beta += 3
flag = True

elif key == 'k':
beta -= 3
flag = True

if key == 'j':
clip -= 1
flag = True

elif key == 'l':
clip += 1
flag = True

if flag == True:
arm.set_angle([alpha,beta,gamma])
arm.set_hanging_clip(clip)
print('servo angles: %s , clip angle: %s '%(arm.servo_positions,arm.component_

→˓staus))

if __name__ == "__main__":

print(manual)

while True:
key = readchar().lower()
control(key)
if key == chr(27):

break

In this code, the control() function is created to control the PiArm by reading the key values on the keyboard.

• alpha, beta and gamma refer to the angles of the 3 servos on the arm respectively, refer to: Angle Mode.

126 Chapter 4. Play with Python

Piarm, Release 1.0

• Press the w key on the keyboard, the alpha increases and the Arm will extend forward.

• Press the s key on the keyboard, the alpha decreases and the Arm will retract backward.

• Press the a key on the keyboard, the gamma increases and the Arm will turn left.

• Press the d key on the keyboard, the gamma decreases and the Arm will turn right.

• Press the i key on the keyboard, the beta increases and the Arm will raise up.

• Press the k key on the keyboard, the beta decreases and the Arm will lower down.

• Finally, use the k and l keys to control the opening and closing of the Hanging Clip respectively.

4.5.3 Electromagnet - Keyboard Control

Run the code

cd /home/pi/piarm/examples
sudo python3 keyboard_control1.py

After running the code, follow the prompts and press the keys on the keyboard to control the PiArm’s arms and
Electromagnet.

But you need to assemble Electromagnet to PiArm first.

Note:

• To switch the keyboard to lowercase English input.

• w, s, a, d, i and k are used to control the rotation of the arm.

• j and l are used to control the ON and OFF of the Electromagnet.

Code

from piarm import PiArm
from robot_hat import Pin,PWM,Servo,ADC
from time import time,sleep
from robot_hat.utils import reset_mcu

import sys
import tty
import termios

reset_mcu()
sleep(0.01)

arm = PiArm([1,2,3])
arm.electromagnet_init(PWM('P3'))
arm.set_offset([0,0,0])
controllable = 0

manual = '''
Press keys on keyboard

w: extend
s: retract
a: turn left

(continues on next page)

4.5. Keyboard Control 127

Piarm, Release 1.0

(continued from previous page)

d: turn right
i: go up
k: go down
j: on
l: off
ESC: Quit

'''

def readchar():
fd = sys.stdin.fileno()
old_settings = termios.tcgetattr(fd)
try:

tty.setraw(sys.stdin.fileno())
ch = sys.stdin.read(1)

finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)

return ch

def control(key):

arm.speed = 100
flag = False
alpha,beta,gamma = arm.servo_positions
status = ""

if key == 'w':
alpha += 3
flag = True

elif key == 's':
alpha -= 3
flag = True

if key == 'a':
gamma += 3
flag = True

elif key == 'd':
gamma -= 3
flag = True

if key == 'i':
beta += 3
flag = True

elif key == 'k':
beta -= 3
flag = True

if key == 'j':
arm.set_electromagnet('on')

elif key == 'l':
arm.set_electromagnet('off')

if flag == True:
arm.set_angle([alpha,beta,gamma])
print('servo angles: %s , electromagnet status: %s '%(arm.servo_positions,

→˓status))

if __name__ == "__main__":

(continues on next page)

128 Chapter 4. Play with Python

Piarm, Release 1.0

(continued from previous page)

print(manual)

while True:
key = readchar().lower()
control(key)
if key == chr(27):

break

In this code, the control() function is created to control the PiArm by reading the key values on the keyboard.

• alpha, beta and gamma refer to the angles of the 3 servos on the arm respectively, refer to: Angle Mode.

• Press the w key on the keyboard, the alpha increases and the Arm will extend forward.

• Press the s key on the keyboard, the alpha decreases and the Arm will retract backward.

• Press the a key on the keyboard, the gamma increases and the Arm will turn left.

• Press the d key on the keyboard, the gamma decreases and the Arm will turn right.

• Press the i key on the keyboard, the beta increases and the Arm will raise up.

• Press the k key on the keyboard, the beta decreases and the Arm will lower down.

• Finally, use the k and l keys to control the ON and OFF of the Electromagnet respectively.

4.6 Coordinate Mode

PiArm’s arm has 2 control modes: Angle Mode and Coordinate Mode.

• Angle Mode: Write a certain angle to the 3 servos of the arm to make the arm reach a specific position.

• Coordinate Mode: Create a spatial coordinate system for the arm, set a control point, and write 3D coordinates
to this control point to make the arm reach a specific position.

The Coordinate Mode is used in this project.

This project sets 2 coordinate points by coordinate mode, and let the PiArm clip the rubber duck on the left to the bowl
on the right. But you need to mount Hanging Clip to the PiArm first.

4.6. Coordinate Mode 129

Piarm, Release 1.0

4.6.1 Programming

Run the code

cd /home/pi/piarm/examples
sudo python3 coordinate_mode.py

After the code is run, after the code is run, you will be able to control the rotation of PiArm’s Arm by toggling the left
and right joystick, and control the angle of the Shovel Bucket by pressing the left and right joystick respectively.

But you need to assemble Hanging Clip to PiArm first.

Code

from re import M
from robot_hat import PWM
from robot_hat.utils import reset_mcu
from time import sleep
from piarm import PiArm

reset_mcu()
sleep(0.01)

" Grab an object from one coordinate to another coordinate"

arm = PiArm([1,2,3])
arm.set_offset([0,0,0])
arm.hanging_clip_init(PWM('P3'))

if __name__ == "__main__":

(continues on next page)

130 Chapter 4. Play with Python

Piarm, Release 1.0

(continued from previous page)

start_coord = [-100, 40, 20] # x,y,z
end_coord = [100, 40, 30] # x,y,z

arm.set_speed(60)
arm.set_hanging_clip(20)
arm.do_by_coord(start_coord)
arm.set_hanging_clip(90)

start_coord_up = [start_coord[0], start_coord[1], 80]
arm.do_by_coord(start_coord_up)

end_coord_up = [end_coord[0], end_coord[1], 80]
arm.do_by_coord(end_coord_up)

arm.do_by_coord(end_coord)
arm.set_hanging_clip(20)
arm.do_by_coord(end_coord_up)

How it works?

start_coord = [-100, 40, 20] # x,y,z
end_coord = [100, 40, 30] # x,y,z

• start_coordThe coordinates of the left rubber duck.

• end_coord: The coordinates of the bowl.

Note:

• All coordinates here refer to the coordinates of the control points, but the actual distance between the X and Y
coordinates is a little larger when the end-of-arm tool is mounted.

• The tolerance distance is different for each end of arm tool. For example, 3-4cm for Hanging Clip and Electro-
magnet, 6-7cm for Shovel Bucket.

• For example, here the X coordinate is written as 100, but the actual distance is 13-14cm.

• It is generally recommended that the X coordinate is -80 ~ 80, but since the Y coordinate value here is small
(the recommended range is 30~130), it is possible to reach to 100. However, if you increase the Y coordinate
value, the X coordinate value needs to be reduced according to the actual situation due to the linkage action.

arm.set_speed(60)
arm.set_hanging_clip(20)
arm.do_by_coord(start_coord)
arm.set_hanging_clip(90)

start_coord_up = [start_coord[0], start_coord[1], 80]
arm.do_by_coord(start_coord_up)

end_coord_up = [end_coord[0], end_coord[1], 80]
arm.do_by_coord(end_coord_up)

arm.do_by_coord(end_coord)
arm.set_hanging_clip(20)
arm.do_by_coord(end_coord_up)

4.6. Coordinate Mode 131

Piarm, Release 1.0

• PiArm opens the Hanging Clip (20°), then rotates to the left rubber duck position (start_coord), then closes
the Hanging Clip (90°).

• PiArm raises his head (start_coord_up) and then turns to the right side above the bowl (end_coord_up).

• PiArm lowers his head (end_coord_up), then opens the Hanging Clip (20°) to let the rubber duck fall into
the bowl, and finally raises his head again (end_coord_up).

4.7 Memory function

PiArm provides a function to record actions, which allows PiArm to do some repetitive actions automatically.

In this project, let’s see how to implement this function.

Run the code

cd /home/pi/piarm/examples
sudo python3 memory_function.py

After the code is run, you can use the left and right joystick to control the rotation of PiArm and the Shovel Bucket (But
you need to assemble Shovel Bucket to PiArm first), press the left joystick to record one movement of PiArm, after
recording several sets of movements, you can press the right joystick to make PiArm to reproduce these movements.

Only record the changes between points, if the starting point and the end point are the same, and you do many moves
in between, but only press once to record, it will go directly from the starting point to the end point, and will not record
the middle process.

Code

from robot_hat import Servo,PWM,Joystick,ADC,Pin
from robot_hat.utils import reset_mcu
from robot_hat import TTS
from time import sleep
from piarm import PiArm

t = TTS()
reset_mcu()
sleep(0.01)

leftJoystick = Joystick(ADC('A0'),ADC('A1'),Pin('D0'))
rightJoystick = Joystick(ADC('A2'),ADC('A3'),Pin('D1'))

arm = PiArm([1,2,3])
arm.bucket_init(PWM('P3'))
arm.set_offset([0,0,0])

def _angles_control():
arm.speed = 100
flag = False
alpha,beta,gamma = arm.servo_positions
bucket = arm.component_staus
global i

if leftJoystick.read_status() == "up":
alpha += 1
flag = True

elif leftJoystick.read_status() == "down":

(continues on next page)

132 Chapter 4. Play with Python

Piarm, Release 1.0

(continued from previous page)

alpha -= 1
flag = True

if leftJoystick.read_status() == "left":
gamma += 1
flag = True

elif leftJoystick.read_status() == "right":
gamma -= 1
flag = True

if rightJoystick.read_status() == "up":
beta += 1
flag = True

elif rightJoystick.read_status() == "down":
beta -= 1
flag = True

if rightJoystick.read_status() == "left":
bucket += 2
flag = True

elif rightJoystick.read_status() == "right":
bucket -= 2
flag = True

if leftJoystick.read_status() == "pressed":
arm.record()
t.say("record")
print('step %s : %s'%(i,arm.steps_buff[i*2]))
i += 1
sleep(0.05)

elif rightJoystick.read_status() == "pressed":

t.say("action")
arm.set_speed(80)
arm.record_reproduce(0.05)
arm.set_speed(100)

if flag == True:
arm.set_angle([alpha,beta,gamma])
arm.set_bucket(bucket)
print('servo angles: %s , bucket angle: %s '%(arm.servo_positions,arm.

→˓component_staus))

if __name__ == "__main__":
print(arm.servo_positions)
i = 0
while True:

_angles_control()
sleep(0.01)

How it works?

In this code, let’s focus on the _angles_control() function, which is used to read the value of the dual joystick
and then perform different operations.

1. control the movement of the Arm

if leftJoystick.read_status() == "up":
alpha += 1

(continues on next page)

4.7. Memory function 133

Piarm, Release 1.0

(continued from previous page)

flag = True
elif leftJoystick.read_status() == "down":

alpha -= 1
flag = True

if leftJoystick.read_status() == "left":
gamma += 1
flag = True

elif leftJoystick.read_status() == "right":
gamma -= 1
flag = True

if rightJoystick.read_status() == "up":
beta += 1
flag = True

elif rightJoystick.read_status() == "down":
beta -= 1
flag = True

• alpha, beta and gamma refer to the angles of the 3 servos on the Arm respectively, refer to: Angle Mode.

• If the left joystick is toggled up, alpha increases and the Arm will extend forward.

• If the left joystick is toggled down, alpha decreases and the Arm will retract backward.

• If the left joystick is toggled to the left, gamma increases and the Arm will turn left.

• If the left joystick is toggled to the right, gamma decreases and the Arm will turn right.

• If the right joystick is toggled up, beta increases and the Arm will raise up.

• If the right joystick is toggled down, beta decreases and the Arm will lower down.

2. Control the angle of the Shovel Bucket

if rightJoystick.read_status() == "left":
bucket += 2
flag = True

elif rightJoystick.read_status() == "right":
bucket -= 2
flag = True

• Right joystick toggles to the left to allow the Shovel Bucket to rewind.

• Right joystick toggles to the right to extend the bucket outward.

3. Recording and reproducing actions

if leftJoystick.read_status() == "pressed":
arm.record()
t.say("record")
print('step %s : %s'%(i,arm.steps_buff[i*2]))
i += 1
sleep(0.05)

elif rightJoystick.read_status() == "pressed":

t.say("action")
arm.set_speed(80)
arm.record_reproduce(0.05)
arm.set_speed(100)

134 Chapter 4. Play with Python

Piarm, Release 1.0

• If the left joystick is pressed and the record() function is called to record the action, PiArm will say that it
has recorded. The terminal will show the angle and the number of recorded moves at this point.

• If the right joystick is pressed, the record_reproduce() function is called to reproduce the recorded action,
and PiArm will prompt to start doing the action.

4. Write the angles to PiArm

if flag == True:
arm.set_angle([alpha,beta,gamma])
arm.set_bucket(bucket)
print('servo angles: %s , bucket angle: %s '%(arm.servo_positions,arm.component_

→˓staus))

Write the angle of the Arm and the Shovel Bucket to PiArm and have it rotate to those angles.

If you have the Hanging Clip or Electromagnet connected to your PiArm, you can modify the above code by referring
to the following parts.

• Hanging Clip - Joystick Control

• Electromagnet - Joystick Control

4.8 GAME - Catching Dolls

Now let’s play a game of catching dolls and see who can catch more dolls with PiArm in the given time. In order to
play this game, we need to implement two functions, the first one is to control PiArm with the dual joystick module,
and the second one is to timing, when the countdown is over, we can’t control PiArm anymore. These two parts must
be executed simultaneously.

4.8. GAME - Catching Dolls 135

Piarm, Release 1.0

Run the code

cd /home/pi/piarm/examples
sudo python3 game_catching_dolls.py

After the code runs, press the left and right joystick at the same time to start the game. Then you can use the dual
joystick module to control PiArm to catch the doll, please pay attention to the time, after 60 seconds, PiArm will tell
the game is over and you will not be able to continue to control PiArm.

Code

from robot_hat import Servo,PWM,Joystick,ADC,Pin
from robot_hat.utils import reset_mcu
from time import sleep
from robot_hat import TTS
import threading

from piarm import PiArm

reset_mcu()
sleep(0.01)
t = TTS()

leftJoystick = Joystick(ADC('A0'),ADC('A1'),Pin('D0'))
rightJoystick = Joystick(ADC('A2'),ADC('A3'),Pin('D1'))

arm = PiArm([1,2,3])
arm.hanging_clip_init(PWM('P3'))
arm.set_offset([0,0,0])
arm.speed = 100
game_flag = 0

def control():

alpha,beta,gamma = arm.servo_positions
clip = arm.component_staus

if leftJoystick.read_status() == "up":
alpha += 1

elif leftJoystick.read_status() == "down":
alpha -= 1

if leftJoystick.read_status() == "left":
gamma += 1

elif leftJoystick.read_status() == "right":
gamma -= 1

if rightJoystick.read_status() == "up":
beta += 1

elif rightJoystick.read_status() == "down":
beta -= 1

if leftJoystick.read_status() == "pressed":
clip += 1

elif rightJoystick.read_status() == "pressed":
clip -= 1

if key_flag == True:
arm.set_angle([alpha,beta,gamma])
arm.set_hanging_clip(clip)

(continues on next page)

136 Chapter 4. Play with Python

Piarm, Release 1.0

(continued from previous page)

print('coord: %s , servo angles: %s , clip angle: %s '%(arm.current_coord,
→˓arm.servo_positions,arm.component_staus))

def timing():
sleep(60)
t.say("three")
sleep(1)
t.say("two")
sleep(1)
t.say("one")
sleep(1)
t.say("game over")
global game_flag
game_flag = 0

if __name__ == "__main__":

thread1 = threading.Thread(target = timing)
thread1.start()
print("Press two joysticks at the same time to start the game")

while True:
if leftJoystick.read_status() == "pressed" and rightJoystick.read_status()

→˓== "pressed":
t.say("timing begins")
game_flag = 1

if game_flag == 1:
control()

How it works?

This code adds timing to the Hanging Clip - Joystick Control project.

def timing():
sleep(60)
t.say("three")
sleep(1)
t.say("two")
sleep(1)
t.say("one")
sleep(1)
t.say("game over")
global game_flag
game_flag = 0

Use the sleep() function to count down in 60 seconds, then let PiArm count down to 3, 2, 1, and when the time is
over, let game_flag be 0, then PiArm will no longer be controlled.

if __name__ == "__main__":

thread1 = threading.Thread(target = timing)
thread1.start()
print("Press two joysticks at the same time to start the game")

Let the timing() function run in a separate thread so that it can be timed while controlling PiArm.

4.8. GAME - Catching Dolls 137

Piarm, Release 1.0

while True:
if leftJoystick.read_status() == "pressed" and rightJoystick.read_status() ==

→˓"pressed":
t.say("timing begins")
game_flag = 1

if game_flag == 1:
control()

This is the main flow of the code, when the left and right joysticks are pressed at the same time, PiArm says the timer
starts, let game_flag be 1, then you can call control() function to control PiArm.

4.9 GAME - Iron Collection

In this project, prepare 3 shapes of iron pieces: triangle, circle and square. PiArm will randomly say a shape, and you
need to control PiArm to put the corresponding shape of iron pieces into the corresponding box.

Run the code

cd /home/pi/piarm/examples
sudo python3 game_iron_collection.py

After the code is run, first press p on the keyboard to start the game, PiArm will prompt the game to start, then
randomly say a shape (Round, Triangle and Square). You need to use w, s, a, d, i and k on the keyboard to
control Arm, j and l to pick up the corresponding shape (you need to install Electromagnet to PiArm first.).

60 seconds later, the game will be prompted to end and you will no longer be able to control the PiArm. If you want
to stop the code from running, you need to press the Esc key first, then press Ctrl+C.

Note:

• w, s, a, d, i and k are used to control the rotation of the Arm.

• j and l are used to control the ON and OFF of the Electromagnet.

Code

from piarm import PiArm
from robot_hat import Pin,PWM,Servo,ADC
from time import time,sleep
from robot_hat.utils import reset_mcu
from robot_hat import TTS

import threading
import sys
import tty
import termios
import random

reset_mcu()
sleep(0.01)
t = TTS()

arm = PiArm([1,2,3])
arm.electromagnet_init(PWM('P3'))
arm.set_offset([0,0,0])

(continues on next page)

138 Chapter 4. Play with Python

Piarm, Release 1.0

(continued from previous page)

arm.speed = 100
flag = False

def readchar():
fd = sys.stdin.fileno()
old_settings = termios.tcgetattr(fd)
try:

tty.setraw(sys.stdin.fileno())
ch = sys.stdin.read(1)

finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)

return ch

manual1 = '''
Press keys on keyboard

p: Game Start
ESC: Stop

'''

manual2 = '''
Press keys on keyboard

w: extend
s: retract
a: turn left
d: turn right
i: go up
k: go down
j: on
l: off

'''

def control():

while flag == True:
arm.speed = 100
flag = False
alpha,beta,gamma = arm.servo_positions

def control(key):
alpha,beta,gamma = arm.servo_positions

if key == 'a':
gamma += 3

elif key == 'd':
gamma -= 3

if key == 's':
alpha -= 3

elif key == 'w':
alpha += 3

if key == 'i':
beta += 3

elif key == 'k':
beta -= 3

if key == 'j':
arm.set_electromagnet('on')

(continues on next page)

4.9. GAME - Iron Collection 139

Piarm, Release 1.0

(continued from previous page)

elif key == 'l':
arm.set_electromagnet('off')

arm.set_angle([alpha,beta,gamma])

def timing():
global flag
while True:

if flag == True:
t.say("game start")
sleep(60)
t.say("three")
sleep(1)
t.say("two")
sleep(1)
t.say("one")
sleep(1)
t.say("game over")
flag = False

def say_shape():
k = random.randint(1,3)
if k == 1:

t.say("Round")
if k == 2:

t.say("Triangle")
if k == 3:

t.say("Square")

if __name__ == "__main__":

print(manual1)

thread1 = threading.Thread(target = timing)
thread1.start()

while True:
key = readchar().lower()
if key == 'p':

print(manual2)
flag = True
sleep(3)
say_shape()

if flag == True:
control(key)

if key == chr(27):
print("press ctrl+c to quit")
break

How it works?

This code is based on the project Electromagnet - Keyboard Control with the addition of timing and speaking random
shapes.

def timing():
global flag
while True:

(continues on next page)

140 Chapter 4. Play with Python

Piarm, Release 1.0

(continued from previous page)

if flag == True:
t.say("game start")
sleep(60)
t.say("three")
sleep(1)
t.say("two")
sleep(1)
t.say("one")
sleep(1)
t.say("game over")
flag = False

This timing() function is used for timing. After prompting the game to start, the game is timed for 60 seconds,
then a countdown of 3, 2, 1 is performed before the game is prompted to end and the flag is set to False.

def say_shape():
k = random.randint(1,3)
if k == 1:

t.say("Round")
if k == 2:

t.say("Triangle")
if k == 3:

t.say("Square")

This say_shape() function is to make PiArm say a random shape.

if __name__ == "__main__":

print(manual1)

thread1 = threading.Thread(target = timing)
thread1.start()

while True:
key = readchar().lower()
if key == 'p':

print(manual2)
flag = True
sleep(3)
say_shape()

if flag == True:
control(key)

if key == chr(27):
break

print("press ctrl+c to quit")

This is the main flow of the code.

• Print out the key prompt in the terminal and let timing() run in a separate thread.

• Call the readchar() function to read the key value.

• If key p is read as being pressed, print out the key prompt and let flag be True, at which point the timing()
function starts timing, and after 3 seconds, call the say_shape() function to make PiArm say a random shape.

• If flag is True, call the control() function to make the PiArm rotate according to the key value.

• chr(27) represents the Esc key, and if the Esc key is pressed, exit the main loop. This step is because
the readchar() function is used to read the keyboard all the time, so you can’t stop the code directly with

4.9. GAME - Iron Collection 141

Piarm, Release 1.0

Ctrl+C.

• At this point, you can stop the code with Ctrl+C.

142 Chapter 4. Play with Python

CHAPTER

FIVE

APPENDIX

5.1 I2C Configuration

Enable the I2C port of your Raspberry Pi (If you have enabled it, skip this; if you do not know whether you have done
that or not, please continue).

sudo raspi-config

3 Interfacing options

P5 I2C

143

Piarm, Release 1.0

<Yes>, then <Ok> -> <Finish>.

144 Chapter 5. Appendix

Piarm, Release 1.0

5.2 Remote Desktop

There are two ways to control the desktop of the Raspberry Pi remotely:

VNC and XRDP, you can use any of them.

5.2.1 VNC

You can use the function of remote desktop through VNC.

Enable VNC service

The VNC service has been installed in the system. By default, VNC is disabled. You need to enable it in config.

Step 1

Input the following command:

sudo raspi-config

Step 2

Choose 3 Interfacing Options by press the down arrow key on your keyboard, then press the Enter key.

5.2. Remote Desktop 145

Piarm, Release 1.0

Step 3

P3 VNC

Step 4

Select Yes -> OK -> Finish to exit the configuration.

Login to VNC

Step 1

You need to download and install the VNC Viewer on personal computer. After the installation is done, open it.

146 Chapter 5. Appendix

https://www.realvnc.com/en/connect/download/viewer/

Piarm, Release 1.0

Step 2

Then select “New connection”.

Step 3

Input IP address of Raspberry Pi and any Name.

5.2. Remote Desktop 147

Piarm, Release 1.0

Step 4

Double click the connection just created:

148 Chapter 5. Appendix

Piarm, Release 1.0

Step 5

Enter Username (pi) and Password (raspberry by default).

5.2. Remote Desktop 149

Piarm, Release 1.0

Step 6

Now you can see the desktop of the Raspberry Pi:

150 Chapter 5. Appendix

Piarm, Release 1.0

That’s the end of the VNC part.

5.2.2 XRDP

Another method of remote desktop is XRDP, it provides a graphical login to remote machines using RDP (Microsoft
Remote Desktop Protocol).

Install XRDP

Step 1

Login to Raspberry Pi by using SSH.

Step 2

Input the following instructions to install XRDP.

sudo apt-get update
sudo apt-get install xrdp

Step 3

Later, the installation starts.

Enter “Y”, press key “Enter” to confirm.

5.2. Remote Desktop 151

Piarm, Release 1.0

Step 4

Finished the installation, you should login to your Raspberry Pi by using Windows remote desktop applications.

Login to XRDP

Step 1

If you are a Windows user, you can use the Remote Desktop feature that comes with Windows. If you are a Mac user,
you can download and use Microsoft Remote Desktop from the APP Store, and there is not much difference between
the two. The next example is Windows remote desktop.

Step 2

Type in “mstsc” in Run (WIN+R) to open the Remote Desktop Connection, and input the IP address of Raspberry Pi,
then click on “Connect”.

Step 3

152 Chapter 5. Appendix

Piarm, Release 1.0

Then the xrdp login page pops out. Please type in your username and password. After that, please click “OK”. At the
first time you log in, your username is “pi” and the password is “raspberry”.

Step 4

Here, you successfully login to RPi by using the remote desktop.

5.2. Remote Desktop 153

Piarm, Release 1.0

5.3 About the Battery

Applicable Parameters

• 3.7V

• 18650

• Rechargeable

• Li-ion Battery

• Button Top

• No Protective Board

Note:

• Robot HAT cannot charge the battery, so you need to buy a battery charger.

• When the two power indicators on the Robot HAT are off, it means the power is too low and the batteries need
to be charged.

Button Top vs Flat Top?

Please choose battery with button top to ensure a good connection between the battery and the battery holder.

154 Chapter 5. Appendix

Piarm, Release 1.0

Button Top Flat Top

No protective board?

You are recommend to use 18650 batteries without a protective board. Otherwise, the robot may be cut power and
stop running because of the overcurrent protection of the protective board.

Battery capacity?

In order to keep the robot working for a long time, use large-capacity batteries as much as possible. It is recommended
to purchase batteries with a capacity of 3000mAh and above.

5.3. About the Battery 155

Piarm, Release 1.0

156 Chapter 5. Appendix

CHAPTER

SIX

THANK YOU

Thanks to the evaluators who evaluated our products, the veterans who provided suggestions for the tutorial, and the
users who have been following and supporting us. Your valuable suggestions to us are our motivation to provide better
products!

Particular Thanks

• Len Davisson

• Kalen Daniel

• Juan Delacosta

Now, could you spare a little time to fill out this questionnaire?

Note: After submitting the questionnaire, please go back to the top to view the results.

157

Piarm, Release 1.0

158 Chapter 6. Thank You

CHAPTER

SEVEN

COPYRIGHT NOTICE

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company.
You should only use it for personal study,investigation, enjoyment, or other non-commercial or nonprofit purposes,
under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right
holders. For any individual or organization that uses these for commercial profit without permission, the Company
reserves the right to take legal action.

159

	Component List and Assembly Instructions
	Hardware Introduction
	Arm
	Shovel Bucket
	Hanging Clip
	Electromagnet
	Dual Joystick Module
	About Robot HAT

	Play with Ezblock
	Quick Guide on Ezblock
	Test 3 EoATs
	Sound Effects
	Dual Joystick Module
	Remote Control
	Coordinate Mode
	Memory Function
	GAME - Catching Dolls
	GAME - Iron Collection

	Play with Python
	Quick Guide on Python
	Test 3 EoATs
	Sound Effects
	Dual Joystick Module Control
	Keyboard Control
	Coordinate Mode
	Memory function
	GAME - Catching Dolls
	GAME - Iron Collection

	Appendix
	I2C Configuration
	Remote Desktop
	About the Battery

	Thank You
	Copyright Notice

